Biomedical Microdevices

, Volume 10, Issue 5, pp 611–622 | Cite as

Nano-opto-mechanical characterization of neuron membrane mechanics under cellular growth and differentiation

  • Ashwini Gopal
  • Zhiquan Luo
  • Jae Young Lee
  • Karthik Kumar
  • Bin Li
  • Kazunori Hoshino
  • Christine Schmidt
  • Paul S. Ho
  • Xiaojing Zhang
Article

Abstract

We designed and fabricated silicon probe with nanophotonic force sensor to directly stimulate neurons (PC12) and measured its effect on neurite initiation and elongation. A single-layer pitch-variable diffractive nanogratings was fabricated on silicon nitride probe using e-beam lithography, reactive ion etching and wet-etching techniques. The nanogratings consist of flexure folding beams suspended between two parallel cantilevers of known stiffness. The probe displacement, therefore the force, can be measured through grating transmission spectrum. We measured the mechanical membrane characteristics of PC12 cells using the force sensors with displacement range of 10 μm and force sensitivity 8 μN/μm. Young’s moduli of 425 ± 30 Pa are measured with membrane deflection of 1% for PC12 cells cultured on polydimethylsiloxane (PDMS) substrate coated with collagen or laminin in Ham’s F-12K medium. In a series of measurements, we have also observed stimulation of directed neurite contraction up to 6 μm on extended probing for a time period of 30 min. This method is applicable to measure central neurons mechanics under subtle tensions for studies on development and morphogenesis. The close synergy between the nano-photonic measurements and neurological verification can improve our understanding of the effect of external conditions on the mechanical properties of cells during growth and differentiation.

Keywords

Mechanotransduction Cytomechanics PC12 Cell membrane Growth Differentiation Nanogratings Micro-electro-mechanical systems (MEMS) Force sensor 

References

  1. G. Bao, S. Suresh, Nat. Mater. 2, 715–725 (2003)CrossRefGoogle Scholar
  2. N. Basso, J.N.M. Heersche, Bone. 30, 347–351 (2002)CrossRefGoogle Scholar
  3. A.R. Bausch, F. Ziemann et al., Biophys. J. 75, 2038–2049 (1998)Google Scholar
  4. M.W. Berns, Sci. Am. 278, 52–7 (1998)CrossRefGoogle Scholar
  5. D. Bray, Dev. Biol. 102, 379–389 (1984)CrossRefGoogle Scholar
  6. W.M. Cowan, J.W. Fawcett et al., Science. 225, 1258–1265 (1984)CrossRefGoogle Scholar
  7. T.J. Dennerll, J. Cell. Biol. 107, 665–674 (1988)CrossRefGoogle Scholar
  8. N. DePaola, P.F. Davies et al., Proc. Natl. Acad. Sci. U. S. A. 96, 3154 (1999)CrossRefGoogle Scholar
  9. D.E. Discher, P. Janmey, et al., 310, 1139–1143 (2005)Google Scholar
  10. J.W. Goodman, Introduction to Fourier optics (Roberts & Co 2005)Google Scholar
  11. A. Gopal, Z. Luo, et al., Solid-state sensors, actuators and microsystems conference, 2007. TRANSDUCERS 2007. International, 1239–1242 (2007)Google Scholar
  12. J. Guck, R. Ananthakrishnan et al., Biophys. J. 81, 767–784 (2001)Google Scholar
  13. K. Hane, T. Endo et al., Sens Actuators: A. Physical. 97, 139–146 (2002)CrossRefGoogle Scholar
  14. R.M. Hochmuth, J. Biomech. 33, 15–22 (2000)CrossRefGoogle Scholar
  15. S.B. Kater, M.P. Mattson et al., Trends. Neurosci. 11, 315–21 (1988)CrossRefGoogle Scholar
  16. WCSSG. Kim, G. Barbastathis, J. Microelectromechanical Syst. 15, 763–769 (2006)CrossRefGoogle Scholar
  17. P. Lamoureux, J. Zheng et al., J. Cell. Biol. 118, 655–661 (1992)CrossRefGoogle Scholar
  18. A.I. Lur’e Three-dimensional problems of the theory of elasticity (Interscience Publishers 1964)Google Scholar
  19. A.B. Mathur, G.A. Truskey et al., Biophys. J. 78, 1725–1735 (2000)CrossRefGoogle Scholar
  20. M. Matsuzaki, N. Honkura et al., Nature. 429, 761–766 (2004)CrossRefGoogle Scholar
  21. T. Mitchison, M. Kirschner, Neuron. 1, 761–72 (1988)CrossRefGoogle Scholar
  22. A.W. Moore, L.Y. Jan et al., Hamlet, a binary genetic switch between single- and multiple-dendrite neuron morphology Science 297, 1355–1358 (2002)CrossRefGoogle Scholar
  23. V. Nesterov, U. Brand. The nonlinear mechanical and elastrical properties of silicon 3D micro probes, euspen. (2004)Google Scholar
  24. V. Nesterov, U. Brand, J. Micromechanics Microengineering. 15, 514–520 (2005)CrossRefGoogle Scholar
  25. V. Nesterov, U. Brand, J. Micromechanics Microengineering. 16, 1116–1127 (2006)CrossRefGoogle Scholar
  26. D. Purves, J.W. Lichtman, Science. 210, 153–157 (1980)CrossRefGoogle Scholar
  27. M. Radmacher, M. Fritz et al., Biophys. J. 70, 556–567 (1996)Google Scholar
  28. S.D. Senturia Microsystem Design (Kluwer Academic Publishers 2001)Google Scholar
  29. A.S. Tischler, L. Greene, Proc. Natl. Acad. Sci. USA. 73, 2424–2428 (1976)CrossRefGoogle Scholar
  30. L. You, S.C. Cowin et al., J. Biomech. 34, 1375–1386 (2001)CrossRefGoogle Scholar
  31. X. Zhang, C.C. Chen et al., J. Microelectromechanical Syst. 14, 1187–1197 (2005)CrossRefGoogle Scholar
  32. X. Zhang, M.P. Scott, et al., J. Microelectro. Mech. Syst. 15 (2006)Google Scholar
  33. J. Zheng, P. Lamoureux et al., J. Neurosci. 11, 1117–1125 (1991)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Ashwini Gopal
    • 1
  • Zhiquan Luo
    • 2
  • Jae Young Lee
    • 3
  • Karthik Kumar
    • 1
  • Bin Li
    • 2
  • Kazunori Hoshino
    • 1
  • Christine Schmidt
    • 3
  • Paul S. Ho
    • 2
  • Xiaojing Zhang
    • 1
  1. 1.Department of Biomedical EngineeringThe University of Texas at AustinAustinUSA
  2. 2.Department of Mechanical EngineeringUniversity of Texas at AustinAustinUSA
  3. 3.Department of Chemical EngineeringUniversity of Texas at AustinAustinUSA

Personalised recommendations