Abstract
We report fabrication and characterization of a new hydrogel-based microsensor for wireless chemical monitoring. The basic device structure is a high-sensitivity capacitive pressure sensor coupled to a stimuli-sensitive hydrogel that is confined between a stiff porous membrane and a thin glass diaphragm. As small molecules pass through the porous membrane, the hydrogel swells and deflects the diaphragm which is also the movable plate of the variable capacitor in an LC resonator. The resulting change in resonant frequency can be remotely detected by the phase-dip technique. Prior to hydrogel loading, the sensitivity of the pressure sensor to applied air pressure was measured to be 222kHz/kPa over the range of 41.9–51.1MHz. With a pH-sensitive hydrogel, the sensor displayed a sensitivity of 1.16MHz/pH for pH3.0–6.5, and a response time of 45 minutes.
This is a preview of subscription content, access via your institution.







References
O. Akar, T. Akin, K. Najafi, Sens. Actuators A 95, 29 (2001)
N.A. Alcantar, E.S. Aydil, J.N. Isrealachvili, J. Biomed. Materi. Res. 51, 343 (2000)
V.L. Alexeev et al., Anal. Chem. 75, 2316 (2003)
B. Amsden, Polym. Gels Netw. 6, 13 (1998)
A. Baldi, Y. Gu, P.E. Loftness, R.A. Siegel, B. Ziaie, Journal of Microelectromechanical Systems 12, 613 (2003)
A. Baldi, M. Lei, Y. Gu, R.A. Siegel, B. Ziaie, Sens. Actuators, B, Chem. 114, 9 (2006)
D.J. Beebe, J.S. Moore, J.M. Bauer, Q. Yu, R.H. Liu, C. Devadoss, B.-H. Jo, Nature 404, 588 (2000)
S. Beeby, G. Ensell, M. Kraft, N. White, MEMS Mechanical Sensors (Artech House Inc., Norwood, 2004)
X. Cao, S. Lai, L.J. Lee, Biomedical Microdevices 3, 109 (2001)
H.L. Chau, K.D. Wise, IEEE Trans. Electron. Devices, 34, 850 (1987)
J. Crank, The Mathematics of Diffusion (Cambridge University Press, Oxford, 1975)
E.L. Cussler, Diffusion (Cambridge University Press, Cambridge, 1997)
S.K. De, N.R. Aluru, B.B.J. Johnson, W.C. Crone, D.J. Beebe, J. Moore, Journal of Microelectromechanical Systems 9, 544 (2002)
J.P. Den Hartog, Advanced Strength of Materials (Dover Publishing, NY, 1987)
L. Dong, A.K. Agarwal, D.J. Beebe, H. Jiang, Nature 442, 551 (2006)
S.R. Eisenberg, A.J. Grodzinsky, J. Biomech. Eng. 109, 79 (1987)
A. English, T. Tanaka, E.R. Edelman, J. Chem. Phys. 107, 1645 (1997)
I.A. Eugene, Electronic Materials Science (Wiley, Hoboken, 2005)
B.A. Firestone, R.A. Siegel, J. Biomater. Sci. Polym. Ed. 43, 901 (1994)
G. Gerlach, M. Guenther, J. Sorber, G. Suchanek, K.-F. Arndt, A. Richter, Sens. Actuators. B. 111–112, 555–561 (2005)
E.S. Gil, S.M. Hudson, Prog. Polym. Sci. 29, 1173–1222 (2004)
C.A. Grimes, D. Kouzoudis, K.G. Ong, R. Crump, Biomedical Microdevices 2, 51 (1999)
P.E. Grimshaw, J.H. Nussbaum, M.L. Yarmush, A.J. Grodzinsky, J. Chem. Phys. 93, 4462 (1990)
I.S. Han, M.H. Han, J. Kim, S. Lew, Y.J. Lee, F. Horkay, J.J. Magda, Biomacromolecules 3, 1271 (2002)
S. Kabilan et al., Biosens. Bioelectron. 20, 1602 (2005)
C.A. Kavanagh, Y.A. Rochev, W.M. Gallagher, K.A. Dawson, A.K. Keenan, Pharmacol. Ther. 102, 1 (2004)
J. Kopecek, Eur. J. Pharm. 20, 1 (2003)
M. Lei, A. Baldi, E. Nuxoll, R.A. Siegel, B. Ziaie, Diabetes Technol. Ther. 8, 112 (2006)
M. Lei, B. Ziaie, E. Nuxoll, K. Ivan, Z. Noszticzius, R.A. Siegel, J. Nanosci. Nanotech. 7, 780 (2007)
L. Masaro, X.X. Zhu, Prog. Polym. Sci 24, 731 (1999)
S. Mujumdar, Ph.D. Thesis. (University of Minnesota, 2007)
J.J. Nussbaum, A.J. Grodzinsky, J. Membr. Sci. 8, 193 (1981)
T. Pan, A. Baldi, E. Davies-Venn, R.F. Drayton, B. Ziaie, J. Micromech. Microeng. 15, 849 (2005)
E. Park, J. Yoon, E. Yoon, Jpn. J. Appl. Phys. 37, 7124 (1998)
J. Rička, T. Tanaka, Macromolecules 17, 2916 (1984)
A.D. Sharkawy, B. Klitzman, G.A. Truskey, W.M. Reichert, Fresenius’ J. Anal. Chem. 366, 402 (1997)
D. Shino, K. Kataoka, Y. Koyama, M. Yokoyama, T. Okano, Y. Sakurai, J. Intell. Mater. Syst. Struct. 5, 311 (1994)
R.A. Siegel, M. Falamarzian, B.A. Firestone, B.A. Moxley, J. Control. Release 8, 179 (1988)
Z.A. Strong, A.W. Wang, C.F. McConaghy, Biomedical Microdevices 4, 97 (2002)
T. Tanaka, D. Fillmore, J. Chem. Phys. 70, 1214 (1979)
T. Tomari, M. Doi, J. Phys. Soc. Jpn. 63, 2093 (1994)
B. Ziaie, A. Baldi, M. Lei, Y. Gu, R.A. Siegel, Adv. Drug Deliv. Rev. 56, 145 (2004)
Acknowledgements
The authors thank the staff of the Nanofabrication Center (NFC) of the University of Minnesota for their assistance. Many thanks go to Tingrui Pan, Woohyek Choi, Hao Hou, Yuandong Gu, and Zhihua Li for their valuable suggestions. Funding for this project was provided by US Army Medical Research Acquisition Activity DA/DAMD17-02-1-0722 and by the National Institutes of Health, grant EB003215.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Lei, M., Baldi, A., Nuxoll, E. et al. Hydrogel-based microsensors for wireless chemical monitoring. Biomed Microdevices 11, 529–538 (2009). https://doi.org/10.1007/s10544-008-9168-5
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10544-008-9168-5
Keywords
- Wireless sensor
- Hydrogel
- Pressure sensor
- Chemical sensor
- Smart material