Biomedical Microdevices

, Volume 10, Issue 4, pp 531–538 | Cite as

Use of nanoporous alumina surface for desorption electrospray ionization mass spectrometry in proteomic analysis

  • A. K. Sen
  • R. Nayak
  • J. DarabiEmail author
  • D. R. Knapp


This paper presents use of a nanoporous alumina surface for desorption electrospray ionization mass spectrometry (DESI MS). The DESI MS performance of the nanoporous alumina surface is compared with that of polymethylmethacrylate (PMMA), polytetrafluroethylene (PTFE) and glass, which are popular surfaces in DESI MS experiments. Optimized operating conditions were determined for each of these surfaces by studying the effects of flow rate, tip to surface and surface to MS capillary distance, and spray angle on the DESI MS performance. The analytes (reserpine and BSA tryptic digest) were analyzed on all the surfaces. The results show that the nanoporous alumina surface offers higher ion intensity and increased peptide detection as compared to the other surfaces. Additionally, comparison of ion intensities obtained from the nanoporus alumina and an alumina film confirms that improved performance is due to the inherent nature of the nanostructured surface. Limits of detection (LODs) were determined for the analytes on all the surfaces. It was observed that the nanoporous alumina surface offers improved limits of detection as compared to other surfaces. Another advantage of the nanoporous alumina surface is that it provides to faster analysis associated with rapid drying of liquid samples on the surface. Additionally, porous alumina surface can be used as a dual ionization platform for combined DESI/LDI analysis for further improved peptide detection in proteomic analysis.


Nanoporous alumina Desorption electrospray ionization Polymethylmethacrylate Polytetrafluroethylene Limits of detection 



This work was supported in part by NIH-NCI grant CA 86285 and the NIH NHLBI Proteomics Initiative via contract N01-HV-28181.


  1. A. Benninghoven, F.G. Rudenauer, H.W. Werner, Series of Monographs on Analytical Chemistry and Its Applications, Vol. 86 (Wiley, New York, 1987)Google Scholar
  2. G. Berkel, M.J. Ford, M.A. Deibel, Anal. Chem. 77, 1207–1215 (2005)CrossRefGoogle Scholar
  3. I. Cotte-Rodriguez, Z. Takats, N. Talaty, H. Chen, B. Gologan, R.G. Cooks, Anal. Chem. 77, 6755 (2005)CrossRefGoogle Scholar
  4. K.L. Busch, Desorption ionization mass spectrometry J. Mass Spectrom. 30, 233 (1995)CrossRefGoogle Scholar
  5. R.B. Cody, J.A. Laramee, H.D. Durst, Anal. Chem. 77, 2297 (2005)CrossRefGoogle Scholar
  6. R.G. Cooks, S.C. Jo, J. Green, Collisions of organic ions at surfaces Appl. Surf. Sci. 13, 231 (2004)Google Scholar
  7. J.B. Fenn, M. Mann, C.K. Meng, S.F. Wong, C.M. Whitehouse, Science 246, 64 (1989)CrossRefGoogle Scholar
  8. J.B. Fenn, M. Mann, C.K. Meng, S.F. Wong, C.M. Whitehouse, Mass Spectrom. Rev. 9, 37 (1990)CrossRefGoogle Scholar
  9. T. Kauppila, N. Talaty, P.K. Salo, T. Kotiaho, R. Kostiainen, R.G. Cooks, Rapid Commun. Mass Spectrom. 20, 2143 (2006)CrossRefGoogle Scholar
  10. L.A. Leuthold, J.F. Mandscheff, M. Fathi, C. Giroud, M. Augsburger, E. Varesio, G. Hopfgartner, Rapid Commun. Mass Spectrom. 20, 103 (2006)CrossRefGoogle Scholar
  11. R. Nayak, D.R. Knapp, Anal. Chem. 79, 4950 (2007)CrossRefGoogle Scholar
  12. R. Nayak, A.K. Sen, D.R. Knapp, J. Liu, J. Am. Soc. Mass Spectrom. (2008) (in press).Google Scholar
  13. M. Nefliu, A. Venter, R.G. Cooks, C. Moore, J. Am. Soc. Mass Spectrom., 17, 1091 (2006)CrossRefGoogle Scholar
  14. N. Talaty, Z. Takats, R.G. Cooks, Analyst, 130, 1624 (2005)CrossRefGoogle Scholar
  15. S.E. Rodriguez-Cruz, Rapid Commun. Mass Spectrom. 20, 53 (2006)CrossRefGoogle Scholar
  16. Z. Takats, J.M. Wiseman, B. Golagan, R.G. Cooks, Science 306, 471 (2004)CrossRefGoogle Scholar
  17. Z. Takats, I. Cotte-Rodriguez, N. Talaty, H. Chen, R.G. Cooks, Chem. Commun. 15, 1950 (2005)CrossRefGoogle Scholar
  18. D.J. Weston, R. Bateman, I.D. Wilson, T.R. Wood, C.S. Creaser, Anal. Chemistry, 77. (2005)Google Scholar
  19. J.P. Williams, J.H. Scrivens, Rapid Commun. Mass Spectrom. 19(3), 364 (2005)Google Scholar
  20. N. Winograd, Appl. Surf. Sci. 203, 13 (2003)CrossRefGoogle Scholar
  21. J.M. Wiseman, S.M. Puolitaival, Z. Takats, R.G. Cooks, R.M. Caprioli, Angew. Chem. Int. Ed. 41, 7094 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringUniversity of South CarolinaColumbiaUSA
  2. 2.Department of PharmacologyMedical University of South CarolinaCharlestonUSA
  3. 3.CytomX, LLCSanta BarbaraUSA

Personalised recommendations