Skip to main content

MEMS-based fabrication and microfluidic analysis of three-dimensional perfusion systems

Abstract

This paper describes fabrication and fluidic characterization of 3D microperfusion systems that could extend the viability of high-density 3D cultures in vitro. High-aspect ratio towers serve as 3D scaffolds to support the cultures and contain injection sites for interstitial delivery of nutrients, drugs, and other reagents. Hollow and solid-top tower arrays with laser ablated side-ports were fabricated using SU-8. Appropriate sizing of fluidic ports improves the control of agent delivery. Microfluidic perfusion can be used to continuously deliver equal amount of nutrients through all ports, or more media can be delivered at some ports than the others, thus allowing spatial control of steady concentration gradients throughout the culture thickness. The induced 3D flow around towers was validated using micro particle image velocimetry. Based on experimental data, the flow rates from the characteristic ports were found to follow the analytical predictions.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. R. Baviere, F. Ayela, S. Le Person, M. Favre-Marinet, Phys. Fluids 17, 098105.1 (2005)

    Article  Google Scholar 

  2. J. Bolinder, Technical report, ISSN 0282–1990 (1999)

  3. D.K. Cullen, J. Vukasinovic, A. Glezer, M.C. LaPlaca, J. Neural Eng. 4, 159 (2007)

    Article  Google Scholar 

  4. J.W. Fawcett, R.A. Barker, S.B. Dunnett, Exp. Brain. Res. 106, 275 (1995)

    Article  Google Scholar 

  5. P. Griss, G. Stemme, J. Microelectromech. Syst. 12, 296 (2003)

    Article  Google Scholar 

  6. M. Hahn, T. Glass, J. Koke, Cytobios 102, 7 (2000)

    Google Scholar 

  7. C.M. Ho, Y.C. Tai, Annu. Rev.Fluid Mech. 30, 579 (1998)

    Article  Google Scholar 

  8. E. Leclerc, Y. Sakai, T. Fujii, Biomed. Microdev. 5, 109 (2003)

    Article  Google Scholar 

  9. C.D. Meinhart, S.T. Wereley, J.G. Santiago, J. Fluids Eng. 122, 285 (2000)

    Article  Google Scholar 

  10. W. Michaeli, C. Ziegmann, Microsyst. Technol. 9, 427 (2003)

    Article  Google Scholar 

  11. B.R. Munson, D.F. Young, T.H. Okiishi, Fundamentals of Fluid Mechanics, 3rd edn. (Wiley, Inc., 1998)

  12. M.G. Olsen, R.J. Adrian, Opt. Laser Technol. 32, 621 (2000)

    Article  Google Scholar 

  13. D.J. Phares, G.T. Smedley, Phys. Fluids 16, 1267 (2004)

    Article  Google Scholar 

  14. S.M. Potter, T.B. DeMarse, J. Neurosci. Methods 11, 0, 17 (2001)

    Article  Google Scholar 

  15. J.G. Santiago, S.T. Wereley, C.D. Meinhart, D.J. Beebee, R.J. Adrian, Exp. Fluids 25, 316 (1998)

    Article  Google Scholar 

  16. J.G. Santiago, R.J. Adrian, Exp. Fluids 36, 741 (2004)

    Article  Google Scholar 

  17. K.V. Sharp, R.J. Adrian, J.G. Santiago, J.I. Molho, Liquid flow in microchannels, in MEMS Handbook, ed. by M. Gad-el-Hak. (CRP Press, 2001)

  18. A. Tourovskaia, X. Figueroa-Masot, A. Folch, Lab Chip 1, 14 (2005)

    Article  Google Scholar 

  19. J. Vukasinovic, A. Glezer, Bull. Am. Phys. Soc. 48, 192 (2003)

    Google Scholar 

  20. J. Vukasinovic, A. Glezer, Proc. ASME IMECE, (Anaheim, 2004)

  21. J. Vukasinovic, A. Glezer, Proc. ASME Summer Bioeng. (Amelia Island, 2006)

  22. S.T. Wereley, C.D. Meinhart, Micron resolution particle image velocimetry, in Diagnostic techniques in microfluidics, ed. by K. Breuer. (Springer Verlag, New York, 2004)

Download references

Acknowledgments

This work was supported by the National Institutes of Health (NIH) Bioengineering Research Partnership Grant (1 R01 EB00786).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yoonsu Choi.

Appendix

Appendix

$$\frac{{p_0 }}{\gamma } + \alpha \frac{{v_0^2 }}{{2g}} = \frac{{p_1 }}{\gamma } + h_1 + \left\{ {f_{v_0 } ,_{d_0 } \frac{{h_1 }}{{d_0 }}\frac{{v_0^2 }}{{2g}} + f_{v_1 } ,_{d_1 } \frac{t}{{d_1 }}\frac{{v_1^2 }}{{2g}}} \right\} + \alpha \left\{ {K_a \frac{{v_1^2 }}{{2g}} + K_1 \frac{{v_1^2 }}{{2g}}} \right\}$$
(1)
$$\frac{{p_0 }}{\gamma } + \alpha \frac{{v_0 ^2 }}{{2g}} = \frac{{p_2 }}{\gamma } + \left( {h_1 + h_2 } \right) + \left\{ {f_{v_0 ,d_0 } \frac{{h_1 }}{{d_0 }}\frac{{v_0^2 }}{{2g}} + f_{v_b ,d_0 } \frac{{h_2 }}{{d_0 }}\frac{{v_b^2 }}{{2g}} + f_{v_2 ,d_2 } \frac{t}{{d_2 }}\frac{{v_2^2 }}{{2g}}} \right\} + \alpha \left\{ {K_b \frac{{v_b^2 }}{{2g}} + K_c \frac{{v_2^2 }}{{2g}} + K_2 \frac{{v_2^2 }}{{2g}}} \right\}$$
(2)
$$\frac{{p_0 }}{\gamma } + \alpha \frac{{v_0^2 }}{{2g}} = \frac{{p_3 }}{\gamma } + \left( {h_1 + h_2 + h_3 } \right) + \left\{ {f_{v_0 ,d_0 } \frac{{h_1 }}{{d_0 }}\frac{{v_0^2 }}{{2g}} + f_{v_b ,d_0 } \frac{{h_2 }}{{d_0 }}\frac{{v_b^2 }}{{2g}} + f_{v_m ,d_0 } \frac{{h_3 }}{{d_0 }}\frac{{v_m^2 }}{{2g}} + f_{v_3 ,d_3 } \frac{t}{{d_3 }}\frac{{v_3^2 }}{{2g}}} \right\} + \alpha \left\{ {K_b \frac{{v_b^2 }}{{2g}} + K_m \frac{{v_m^2 }}{{2g}} + K_e \frac{{v_3^2 }}{{2g}} + K_3 \frac{{v_3^2 }}{{2g}}} \right\}$$
(3)
$$\begin{aligned} & \frac{{p_0 }}{\gamma } + \alpha \frac{{v_0^2 }}{{2g}} = \frac{{p_4 }}{\gamma } + \left( {h_1 + h_2 + h_3 + h_4 } \right) + \left\{ {f_{v_0 ,d_0 } \frac{{h_1 }}{{d_0 }}\frac{{v_0^2 }}{{2g}} + f_{v_b ,d_0 } \frac{{h_2 }}{{d_0 }}\frac{{v_b^2 }}{{2g}} + f_{v_m ,d_0 } \frac{{h_3 }}{{d_0 }}\frac{{v_m^2 }}{{2g}} + f_{v_4 ,d_0 } \frac{{h_4 }}{{d_0 }}\frac{{v_4^2 }}{{2g}}} \right\} \\ & \mathop {}\limits_{}^{} \mathop {\mathop {}\nolimits_{} \mathop {}\nolimits_{}^{} }\limits_{}^{} \mathop {}\nolimits_{} + \alpha \left\{ {K_b \frac{{v_b^2 }}{{2g}} + K_m \frac{{v_m^2 }}{{2g}} + K_s \frac{{v_4^2 }}{{2g}} + K_4 \frac{{v_4^2 }}{{2g}}} \right\} \\ \end{aligned} $$
(4)
$$K_1 = K_2 = K_3 = K_4 = 1$$
(5)
$$p_0 = p_1 + \gamma h_1 = p_2 + \gamma \left( {h_1 + h_2 } \right) = p_3 + \gamma \left( {h_1 + h_2 + h_3 } \right) = p_4 + \gamma \left( {h_1 + h_2 + h_3 + h_4 } \right)$$
(6)
$$f_{v_1 ,d_1 } \frac{t}{{d_{_1 } }}\frac{{v_1^2 }}{{2g}} = f_{v_b ,d_0 } \frac{{h_2 }}{{d_0 }}\frac{{v_b^2 }}{{2g}} + f_{v_2 ,d_2 } \frac{t}{{d_2 }}\frac{{v_2^2 }}{{2g}}$$
(7)
$$f_{v_2 ,d_2 } \frac{t}{{d_2 }}\frac{{v_2^2 }}{{2g}} = f_{v_m ,d_0 } \frac{{h_2 }}{{d_0 }}\frac{{v_m^2 }}{{2g}} + f_{v_3 ,d_3 } \frac{t}{{d_3 }}\frac{{v_3^2 }}{{2g}}$$
(8)
$$f_{v_3 ,d_3 } \frac{t}{{d_3 }}\frac{{v_3^2 }}{{2g}} = f_{v_4 ,d_4 } \frac{{h_4 }}{{d_0 }}\frac{{v_4^2 }}{{2g}}$$
(9)
$$\left[ v \right] = \frac{4}{\pi }\frac{{\left[ Q \right]}}{{\left[ d \right]^2 }} f_{\left[ v \right],\left[ d \right]} = \frac{{64}}{{\left[ {{\text{Re}}} \right]}} = \frac{{64\mu }}{{\rho \left[ v \right]\left[ d \right]}}$$
(10)
$$d_1 = d_0 \left( {\frac{t}{{5h_2 + 3h_3 + h_4 }}} \right)^{{\raise0.7ex\hbox{$1$} \!\mathord{\left/ {\vphantom {1 4}}\right.\kern-\nulldelimiterspace}\!\lower0.7ex\hbox{$4$}}} d_2 = d_0 \left( {\frac{t}{{3h_3 + h_4 }}} \right)^{{\raise0.7ex\hbox{$1$} \!\mathord{\left/ {\vphantom {1 4}}\right.\kern-\nulldelimiterspace}\!\lower0.7ex\hbox{$4$}}} d_3 = d_0 \left( {\frac{t}{{h_4 }}} \right)^{{\raise0.7ex\hbox{$1$} \!\mathord{\left/ {\vphantom {1 4}}\right.\kern-\nulldelimiterspace}\!\lower0.7ex\hbox{$4$}}} $$
(11)
$${{d_j } \mathord{\left/ {\vphantom {{d_j } {d_0 }}} \right. \kern-\nulldelimiterspace} {d_0 }} = \left\{ {{t \mathord{\left/ {\vphantom {t {\sum\limits_{i = j}^N {\left[ {2\left( {N - i} \right) + 1} \right]h_{i + 1} } }}} \right. \kern-\nulldelimiterspace} {\sum\limits_{i = j}^N {\left[ {2\left( {N - i} \right) + 1} \right]h_{i + 1} } }}} \right\}^{0.25} , j = 1,..,N$$
(12)
$$d_{j - 1} = \left[ {{1 \mathord{\left/ {\vphantom {1 {d_N^4 + \sum\limits_{i = j}^N {2\left( {N - i + 1} \right){{h_i } \mathord{\left/ {\vphantom {{h_i } {\left( {td_0^4 } \right)}}} \right. \kern-\nulldelimiterspace} {\left( {td_0^4 } \right)}}} }}} \right. \kern-\nulldelimiterspace} {d_N^4 + \sum\limits_{i = j}^N {2\left( {N - i + 1} \right){{h_i } \mathord{\left/ {\vphantom {{h_i } {\left( {td_0^4 } \right)}}} \right. \kern-\nulldelimiterspace} {\left( {td_0^4 } \right)}}} }}} \right]^{ - 0.25} , j = 2,..,N \lim _{d_0 \to \infty } d_{j - 1} = d_N $$
(13)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Choi, Y., Vukasinovic, J., Glezer, A. et al. MEMS-based fabrication and microfluidic analysis of three-dimensional perfusion systems. Biomed Microdevices 10, 437–446 (2008). https://doi.org/10.1007/s10544-007-9153-4

Download citation

Keywords

  • Three-dimensional culture systems
  • Interstitial microfluidic perfusion systems
  • Micro particle image velocimetry
  • SU-8