Skip to main content

Advertisement

Log in

Alginate and chitosan particles as drug delivery system for cell therapy

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

An Erratum to this article was published on 18 June 2008

Abstract

Drug-carrying microstructures which have a size similar to biological structures are very attractive to encapsulate drugs and protect them during the transit in the human body. This paper describes polymeric (alginate and chitosan) particles (average radius 500 nm) produced by homogenization techniques. In vitro studies performed on cell lines demonstrate the effectiveness of such particles for intracellular drug delivery. Our experiments suggest that cellular up - take increases linearly with particle concentration in the growth medium, and the internalization process has a first order kinetics (characteristic time around 0.5 h−1). In addition, the particles degrade within 24 h from the up-take without side effects for cell viability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • N.A. Campbell, J.B. Reece, Biology, 6th edn. (Cummings, San Francisco (2002)

    Google Scholar 

  • G. Ciofani, V. Raffa, A. Menciassi, S. Micera, P. Dario, A drug delivery system based on alginate particles: mass-transport test and in vitro validation Biomed. Microdevices, 9(3), 395–403 (2007)

    Article  Google Scholar 

  • C. Chretien, J.C. Chaumeil, Release of a macromolecular drug from alginate-impregnated particles Int. J. Pharm. 304, 18–28 (2005)

    Article  Google Scholar 

  • P. Couvreur, C. Vauthier, Nanotechnology: intelligent design to treat complex disease Pharm. Res. 23(7), 1417–1450 (2006)

    Article  Google Scholar 

  • K.L. Douglas, M. Tabrizian, New approach to the preparation of alginate–chitosan nanoparticles as gene carriers J. Biomater. Sci. Polymer Edn. 16(1), 43–56 (2005)

    Article  Google Scholar 

  • M. Ferrari, Nanovector therapeutics Curr. Opin. Chem. Biol 9, 343–346 (2005)

    Article  Google Scholar 

  • H. Gao, W. Shi, L.B. Freund, Mechanics of receptor-mediated endocytosis PNAS 102(27), 9469–9474 (2005)

    Article  Google Scholar 

  • W.R. Gombotz, S.F. Wee, Protein release from alginate matrices Adv. Drug Deliv. Rev. 31, 267–285 (1998)

    Article  Google Scholar 

  • G. Gregoriadis, E.J. Wills, C.P. Swain, A.S. Tavill, Drug carrier potential of liposomes in cancer chemotherapy Lancet 1, 1313–1316 (1974)

    Article  Google Scholar 

  • M.L. Hans, A.M. Lowman, in Nanomaterials Handbook (CRC Press, Boca Raton, FL, 2006), pp 637–664

  • O. Harush-Frenkel, N. Debotton, S. Benita, Y. Altschuler, Targeting of nanoparticles to the clathrin-mediated endocytic pathway Biochem. Biophys. Res. Commun. 353, 26–32 (2007)

    Article  Google Scholar 

  • Y. Ikeda, M.K.L. Collins, P.A. Radcliffe, K.A. Mitrophanous, Y. Takeuchi, Gene transduction efficiency in cells of different species by HIV and EIAV vectors Gene Ther. 9, 932–938 (2002)

    Article  Google Scholar 

  • M. Jahanshahi, S. Williams, A. Lyddiatt, S.A. Shojaosadati, Preparation and purification of synthetic protein nanoparticulates J. IEE Proc-Nano-biotechnol. 151(5), 176–182 (2004)

    Article  Google Scholar 

  • O. Kwunchit, W.M. Bernd, Chitosan sponges as sustained release drug carriers Int. J. Pharm. 156, 229–37 (1997)

    Article  Google Scholar 

  • H.J. Lee, D.N. Hammond, T.H. Large, J.D. Roback, J.A. Sim, D.A. Brown, U.H. Otten, B.H. Wainer, Neuronal properties and trophic activities of immortalized hippocampal cells from embryonic and young adult mice J. Neurosci. 10, 1769–1778 (1990)

    Google Scholar 

  • J.J. Marty, R.C. Oppenheim, P. Speiser, Nanoparticles—a new colloidal drug delivery system Pharm. Acta Helv. 53(1), 17–23 (1978)

    Google Scholar 

  • S.M. Moghimi, A.C. Hunter, J.C. Murray, Long-circulating and target specific nanoparticles: theory to practice Pharmacol. Rev. 53, 283–318 (2001)

    Google Scholar 

  • V.J. Mohanraj, Y. Chen, Nanoparticles: a review Trop. J. Pharm. Res. 5(1), 561–573 (2006)

    Google Scholar 

  • S. Murtas, G. Capuani, M. Dentini, C. Manetti, G. Masci, M. Massimi, A. Miccheli, V. Crescenzi, Alginate beads as immobilization matrix for hepatocytes perfused in a bioreactor J. Biomater. Sci. Polymer Edn 16(7), 829–846 (2005)

    Article  Google Scholar 

  • J.D. Nelson, Simultaneous evaluation of tear turnover and corneal epithelial permeability by fluorophotometry in normal subjects and patients with keratoconjunctivitis sicca (KCS) Trans. Am. Ophthalmol. Soc. 93, 709–753 (1995)

    Google Scholar 

  • J. Panyam, V. Labhasetwar, Dynamics of endocytosis and exocytosis of poly(d,l-lactide-co-glycolide) nanoparticles in vascular smooth muscle cells Pharm. Res. 20, 210–218 (2003)

    Article  Google Scholar 

  • V. Raffa, P. Castrataro, A. Menciassi, P. Dario, Applied scanning probe methods vol. IIB. Bhushan, H. Fuchs (Springer, Heidelberg, Germany (2005)

  • W. Tiyaboonchai, Chitosan nanoparticles: a promising system for drug delivery Naresuan University Journal 11 (3), 51–66 (2003)

    Google Scholar 

  • S. Tokura, S.I. Nishimura, N. Sakairi, N. Nishi, Biological activities of biodegradable polysaccharide Macromol Symp 101, 389–96 (1996)

    Google Scholar 

  • L.Y. Wang, G.H. Ma, Z.G. Su, Preparation of uniform sized chitosan particles by membrane emulsification technique and application as a carrier of protein drug J. Control. Release 106, 62–75 (2005)

    Article  Google Scholar 

  • S. Wittaya-Areekul, J. Kruenate, C. Prahsarn, Preparation and in vitro evaluation of mucoadhesive properties of alginate/chitosan microparticles containing prednisolone Int. J. Pharm 312(1–2), 113–118 (2006)

    Article  Google Scholar 

  • C.H. Yang, K.S. Huang, J.Y. Chang, Manufacturing monodisperse chitosan particles containing ampicillin using a microchannel chip Biomed Microdevices 9, 253–259 (2007)

    Article  Google Scholar 

  • Z. Zhang, S. Burton, S. Williams, E. Thwaites, A. Lyddiatt, Design and assembly of solid-phases for the effective recovery of nanoparticulate bioproducts in fluidized bed contactors Bioseparation 10(1), 113–132 (2001)

    Article  Google Scholar 

Download references

Acknowledgements

The activity presented in this work has been partially supported by the IIT (Italian Institute of Technology) Network and the NINIVE (Non Invasive Nanotransducer for In Vivo gene thErapy, STRP 033378) project, cofinanced by the 6FP of the European Commission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianni Ciofani.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s10544-008-9191-6

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ciofani, G., Raffa, V., Menciassi, A. et al. Alginate and chitosan particles as drug delivery system for cell therapy. Biomed Microdevices 10, 131–140 (2008). https://doi.org/10.1007/s10544-007-9118-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-007-9118-7

Keywords

Navigation