Biomedical Microdevices

, Volume 10, Issue 2, pp 131–140 | Cite as

Alginate and chitosan particles as drug delivery system for cell therapy

  • Gianni Ciofani
  • Vittoria Raffa
  • Arianna Menciassi
  • Paolo Dario


Drug-carrying microstructures which have a size similar to biological structures are very attractive to encapsulate drugs and protect them during the transit in the human body. This paper describes polymeric (alginate and chitosan) particles (average radius 500 nm) produced by homogenization techniques. In vitro studies performed on cell lines demonstrate the effectiveness of such particles for intracellular drug delivery. Our experiments suggest that cellular up - take increases linearly with particle concentration in the growth medium, and the internalization process has a first order kinetics (characteristic time around 0.5 h−1). In addition, the particles degrade within 24 h from the up-take without side effects for cell viability.


Drug delivery system Alginate particles Chitosan particles Cellular up-take 


  1. N.A. Campbell, J.B. Reece, Biology, 6th edn. (Cummings, San Francisco (2002)Google Scholar
  2. G. Ciofani, V. Raffa, A. Menciassi, S. Micera, P. Dario, A drug delivery system based on alginate particles: mass-transport test and in vitro validation Biomed. Microdevices, 9(3), 395–403 (2007)CrossRefGoogle Scholar
  3. C. Chretien, J.C. Chaumeil, Release of a macromolecular drug from alginate-impregnated particles Int. J. Pharm. 304, 18–28 (2005)CrossRefGoogle Scholar
  4. P. Couvreur, C. Vauthier, Nanotechnology: intelligent design to treat complex disease Pharm. Res. 23(7), 1417–1450 (2006)CrossRefGoogle Scholar
  5. K.L. Douglas, M. Tabrizian, New approach to the preparation of alginate–chitosan nanoparticles as gene carriers J. Biomater. Sci. Polymer Edn. 16(1), 43–56 (2005)CrossRefGoogle Scholar
  6. M. Ferrari, Nanovector therapeutics Curr. Opin. Chem. Biol 9, 343–346 (2005)CrossRefGoogle Scholar
  7. H. Gao, W. Shi, L.B. Freund, Mechanics of receptor-mediated endocytosis PNAS 102(27), 9469–9474 (2005)CrossRefGoogle Scholar
  8. W.R. Gombotz, S.F. Wee, Protein release from alginate matrices Adv. Drug Deliv. Rev. 31, 267–285 (1998)CrossRefGoogle Scholar
  9. G. Gregoriadis, E.J. Wills, C.P. Swain, A.S. Tavill, Drug carrier potential of liposomes in cancer chemotherapy Lancet 1, 1313–1316 (1974)CrossRefGoogle Scholar
  10. M.L. Hans, A.M. Lowman, in Nanomaterials Handbook (CRC Press, Boca Raton, FL, 2006), pp 637–664Google Scholar
  11. O. Harush-Frenkel, N. Debotton, S. Benita, Y. Altschuler, Targeting of nanoparticles to the clathrin-mediated endocytic pathway Biochem. Biophys. Res. Commun. 353, 26–32 (2007)CrossRefGoogle Scholar
  12. Y. Ikeda, M.K.L. Collins, P.A. Radcliffe, K.A. Mitrophanous, Y. Takeuchi, Gene transduction efficiency in cells of different species by HIV and EIAV vectors Gene Ther. 9, 932–938 (2002)CrossRefGoogle Scholar
  13. M. Jahanshahi, S. Williams, A. Lyddiatt, S.A. Shojaosadati, Preparation and purification of synthetic protein nanoparticulates J. IEE Proc-Nano-biotechnol. 151(5), 176–182 (2004)CrossRefGoogle Scholar
  14. O. Kwunchit, W.M. Bernd, Chitosan sponges as sustained release drug carriers Int. J. Pharm. 156, 229–37 (1997)CrossRefGoogle Scholar
  15. H.J. Lee, D.N. Hammond, T.H. Large, J.D. Roback, J.A. Sim, D.A. Brown, U.H. Otten, B.H. Wainer, Neuronal properties and trophic activities of immortalized hippocampal cells from embryonic and young adult mice J. Neurosci. 10, 1769–1778 (1990)Google Scholar
  16. J.J. Marty, R.C. Oppenheim, P. Speiser, Nanoparticles—a new colloidal drug delivery system Pharm. Acta Helv. 53(1), 17–23 (1978)Google Scholar
  17. S.M. Moghimi, A.C. Hunter, J.C. Murray, Long-circulating and target specific nanoparticles: theory to practice Pharmacol. Rev. 53, 283–318 (2001)Google Scholar
  18. V.J. Mohanraj, Y. Chen, Nanoparticles: a review Trop. J. Pharm. Res. 5(1), 561–573 (2006)Google Scholar
  19. S. Murtas, G. Capuani, M. Dentini, C. Manetti, G. Masci, M. Massimi, A. Miccheli, V. Crescenzi, Alginate beads as immobilization matrix for hepatocytes perfused in a bioreactor J. Biomater. Sci. Polymer Edn 16(7), 829–846 (2005)CrossRefGoogle Scholar
  20. J.D. Nelson, Simultaneous evaluation of tear turnover and corneal epithelial permeability by fluorophotometry in normal subjects and patients with keratoconjunctivitis sicca (KCS) Trans. Am. Ophthalmol. Soc. 93, 709–753 (1995)Google Scholar
  21. J. Panyam, V. Labhasetwar, Dynamics of endocytosis and exocytosis of poly(d,l-lactide-co-glycolide) nanoparticles in vascular smooth muscle cells Pharm. Res. 20, 210–218 (2003)CrossRefGoogle Scholar
  22. V. Raffa, P. Castrataro, A. Menciassi, P. Dario, Applied scanning probe methods vol. IIB. Bhushan, H. Fuchs (Springer, Heidelberg, Germany (2005)Google Scholar
  23. W. Tiyaboonchai, Chitosan nanoparticles: a promising system for drug delivery Naresuan University Journal 11 (3), 51–66 (2003)Google Scholar
  24. S. Tokura, S.I. Nishimura, N. Sakairi, N. Nishi, Biological activities of biodegradable polysaccharide Macromol Symp 101, 389–96 (1996)Google Scholar
  25. L.Y. Wang, G.H. Ma, Z.G. Su, Preparation of uniform sized chitosan particles by membrane emulsification technique and application as a carrier of protein drug J. Control. Release 106, 62–75 (2005)CrossRefGoogle Scholar
  26. S. Wittaya-Areekul, J. Kruenate, C. Prahsarn, Preparation and in vitro evaluation of mucoadhesive properties of alginate/chitosan microparticles containing prednisolone Int. J. Pharm 312(1–2), 113–118 (2006)CrossRefGoogle Scholar
  27. C.H. Yang, K.S. Huang, J.Y. Chang, Manufacturing monodisperse chitosan particles containing ampicillin using a microchannel chip Biomed Microdevices 9, 253–259 (2007)CrossRefGoogle Scholar
  28. Z. Zhang, S. Burton, S. Williams, E. Thwaites, A. Lyddiatt, Design and assembly of solid-phases for the effective recovery of nanoparticulate bioproducts in fluidized bed contactors Bioseparation 10(1), 113–132 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Gianni Ciofani
    • 1
    • 3
  • Vittoria Raffa
    • 1
  • Arianna Menciassi
    • 1
    • 2
  • Paolo Dario
    • 1
    • 2
  1. 1.CRIM Lab–Center for Research in MicroengineeringScuola Superiore Sant’AnnaPisaItaly
  2. 2.Italian Institute of Technology (IIT Network)GenovaItaly
  3. 3.CRIM–Center for Research In MicroengineeringScuola Superiore Sant’AnnaPontedera (PI)Italy

Personalised recommendations