Skip to main content
Log in

Characterization of surface modification on microelectrode arrays for in vitro cell culture

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

This study aims to investigate surface-modified microelectrodes on the microelectrode arrays (MEAs) for neuronal interfaces with in vitro cell culture. The polyimide (PI) MEA was fabricated by using micro-electro-mechanical systems (MEMS) techniques. Self-assembled monolayers (SAMs) of 11-mercaptoundecanoic acid (MUA) were utilized to modify the microelectrode surface of the MEA. The SAMs’ modified surface of microelectrodes offered a reliable interface to immobilize biological ligands through covalent bonding. To increase biocompatibility, the poly-d-lysine (PDL) was immobilized on the SAMs’ modified microelectrodes. Several analytical techniques were used to define the physical structure and functional groups of surface-modified gold microelectrodes on the MEA. Spectra of the Fourier transform infrared reflection (FTIR) were applied to characterize the molecular structure of MUA-SAMs and PDL on the microelectrodes. The spectra, two peaks of amide I (at 1,613 cm−1) and amide II (at 1,548 cm−1), revealed that covalent amide bonding existed in PDL-MUA-SAMs modified surfaces. The thickness and formation of the MUA and PDL were also observed and quantified by using an atomic force microscope (AFM). The impedance measurement of PDL-MUA-SAMs modified MEA only increased slightly to an average of 524.6 ± 55.8 kΩ from 352.9 ± 34.4 kΩ of bare gold microelectrode (p < 0.05, N = 20). In addition, the time-course changes of total impedance resulting from cell sealing resistance and gap reactance were recorded for 7 days for inferring the growth of cell lines on the electrode contact of modified MEA. The experiment of 3T3 fibroblasts, PC12 cells, primary glial cells, and primary cortical neurons cultured on the modified MEAs displayed a good adhesion rate. These biocompatibility assays demonstrated that the neuronal cells are able to grow in a proximity to PDL-MUA-SAMs modified microelectrodes of the MEAs for effective electrophysiological stimulation/sensing schemes and for future implantation purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • J.R. Buitenweg, W.L.C. Rutten, E. Marani, S.K.L. Polman, J. Ursum, J. Neurosci. Methods 115, 211–221 (2002)

    Article  Google Scholar 

  • M. Chiappalone, A. Vato, M.B. Tedesco, M. Marcoli, F. Davide, S. Martinoia, Biosens. Bioelectron. 18, 627–634 (2003)

    Article  Google Scholar 

  • C.E.D. Chidsey, D.N. Loiacono, Langmuir 6, 682–691 (1990)

    Article  Google Scholar 

  • H.A. Chou, D.H. Zavitz, M. Ovadia, Biosens. Bioelectron. 18, 11–21 (2003)

    Article  Google Scholar 

  • K. Durick, P. Negulescu, Biosens. Bioelectron. 16, 587–592 (2001)

    Article  Google Scholar 

  • S. Flink, F.C.J.M. van Veggel, D.N. Reinhoudt, Adv. Mater. 12, 1315–1328 (2000)

    Article  Google Scholar 

  • M. Franco, P.F. Nealey, S. Campbell, A.I. Teixeira, C.J. Murphy, J. Biomed. Mater. Res. 52, 261–269 (2000)

    Article  Google Scholar 

  • R.I. Freshney, Culture of Animal Cells: A Manual of Basic Technique, 4th edn. (Wiley-Liss Press, New York, 2000), p. 177

    Google Scholar 

  • P. Heiduschka, S. Thanos, Prog. Neurobiol. 55, 433–461 (1998)

    Article  Google Scholar 

  • S. Ingebrandt, C.K. Yeung, M. Krause, A. Offenhäusser, Biosens. Bioelectron. 16, 565–570 (2001)

    Article  Google Scholar 

  • H. Kaji, Y. Takii, M. Nishizawa, T. Matsue, Biomaterials 24, 4239–4244 (2003)

    Article  Google Scholar 

  • T.G. Kooten, H.T. Spijker, H.J. Busscher, Biomaterials 25, 1735–1747 (2004)

    Article  Google Scholar 

  • N. Lambeng, P.P. Michel, B. Brugg, Y. Agid, M. Ruberg, Brain Res. 821, 60–68 (1999)

    Article  Google Scholar 

  • S. Lan, M. Veiseh, M. Zhang, Biosens. Bioelectron. 20, 1697–1708 (2005)

    Article  Google Scholar 

  • J.D. Liao, S.P. Lin, Y.T. Wu, Biomacromolecules 6, 392–399 (2005)

    Article  Google Scholar 

  • Y.P. Liu, H.I. Lin, S.F. Tzeng, Brain Res. 1054, 152–158 (2005)

    Article  Google Scholar 

  • A.P. Marques, R.L. Reis, J.A. Hunt, Biomaterials 23, 1471–1478 (2002)

    Article  Google Scholar 

  • S. Martinoia, L. Bonzano, M. Chiappalone, M. Tedesco, M. Marcoli, G. Maura, Biosens. Bioelectron. 20, 2071–2078 (2005)

    Article  Google Scholar 

  • R.K. Mendes, R.S. Freire, C.P. Fonseca, S. Neves, L.T. Kubota, J. Braz. Chem. Soc. 15, 849–855 (2004)

    Article  Google Scholar 

  • A.L. Morales-Cruz, R. Tremont, R. Martínez, R. Romañach, C.R. Cabrera, Appl. Surf. Sci. 241, 371–383 (2005)

    Article  Google Scholar 

  • Y. Nam, D.W. Branch, B.C. Wheeler, Biosens. Bioelectron. 22, 589–597 (2006)

    Article  Google Scholar 

  • Y. Nam, J.C. Chang, B.C. Wheeler, G.J. Brewer, IEEE Trans. Biomed. Eng. 51, 158–165 (2004)

    Article  Google Scholar 

  • S.M. O’Connor, J.D. Andreadis, K.M. Shaffer, W. Ma, J.J. Pancrazio, D.A. Stenger, Biosens. Bioelectron. 14, 871–881 (2000)

    Article  Google Scholar 

  • T.J. O’Shaughnessy, B. Zim, W. Ma, K.M. Shaffer, D.A. Stenger, K. Zamani, G.W. Gross, J.J. Pancrazio, Brain Res. 959, 280–286 (2003)

    Article  Google Scholar 

  • B.D. Ratner, A.S. Hoffman, F.J. Schoen, J.E. Lemons, Biomaterials Science: An Introduction to Materials in Medicine. (Academic, San Diego, 1996), p. 165

    Google Scholar 

  • E.V. Romanova, S.P. Oxley, S.S. Rubakhin, P.W. Bohn, J.V. Sweedler, Biomaterials 27, 1665–1669 (2006)

    Article  Google Scholar 

  • W. Rutten, J.M. Mouveroux, J. Buitenweg, C. Heida, T. Ruardij, E. Marani, E. Lakke, Proc. IEEE 89, 1013–1029 (2001)

    Article  Google Scholar 

  • W.L.C. Rutten, J.P.A. Smit, T.A. Frieswijk, J.A. Bielen, A.L.H. Brouwer, J.R. Buitenweg, C. Heida, IEEE Eng. Med. Biol. Mag. 47–55 (1999)

  • M.H. Schoenfisch, M. Ovadia, J.E. Pemberton, J. Biomed. Mater. Res. 51, 209–215 (2000)

    Article  Google Scholar 

  • A. Singh, G. Ehteshami, S. Massia, J.P. He, R.G. Storer, G.B. Raupp, Biomaterials 24, 5083–5089 (2003)

    Article  Google Scholar 

  • G.E. Slaughter, E. Bieberich, G.E. Wnek, K.J. Wynne, A. Guiseppi-Elie, Langmuir 20, 7189–7200 (2004)

    Article  Google Scholar 

  • R.K. Smith, P.A. Lewis, P.S. Weiss, Prog. Surf. Sci. 75, 1–68 (2004)

    Article  Google Scholar 

  • D.A. Stenger, G.W. Gross, E.W. Keefer, K.M. Shaffer, J.D. Andreadis, W. Ma, J.J. Pancrazio, Trends Biotechnol. 19, 304–309 (2001)

    Article  Google Scholar 

  • A. Ulman, Chem. Rev. 96, 1533–1554 (1996)

    Article  Google Scholar 

  • T. Yagi, Y. Ito, H. Kanda, S. Tanaka, M. Watanabe, Y. Uchikawa, in Systems, Man, and Cybernetics, 1999, IEEE SMC ‘99 Conference Proceedings (IEEE, Tokyo, 1999), p. 382

  • C.M. Yam, L. Zheng, M. Salmain, C.M. Pradier, P. Marcus, G. Jaouen, Colloids Surf. B Biointerfaces 21, 317–327 (2001)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Council of Taiwan under contract number NSC 94-2213-E-006-115. Technical support to fabricate the microelectrode was given by the Micro-Nano Technology Research Center, National Cheng Kung University, and the Southern Region Micro-Electro-Mechanical System Research Center in Tainan, Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia-Jin J. Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, SP., Chen, JJ.J., Liao, JD. et al. Characterization of surface modification on microelectrode arrays for in vitro cell culture. Biomed Microdevices 10, 99–111 (2008). https://doi.org/10.1007/s10544-007-9114-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-007-9114-y

Keywords

Navigation