Skip to main content

Advertisement

Log in

Power density requirement of a 4 MHz micro-ultrasonic transducer for sonodynamic therapy

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

In this paper, we propose the use of micro-ultrasonic transducers (MUTs) for a therapeutic application in combination with a cancer drug. In particular, sonodynamic enhancement of doxorubicin cytotoxicity was investigated in vitro using human prostate cancer cells (PC3). Cells in suspensions were found to be two to three times more prone to the cytotoxic effect of ultrasound than adherent cells. With 60 s of tone-burst ultrasound (4 MHz, 50 ms repetition period, and 25% duty cycle) at 40 Watt/cm2 (spatial average–temporal average), cytotoxicity of doxorubicin treatment of adherent cells increased from 27 to 91%. The threshold ultrasonic power density required for any cytotoxicity enhancement to be observable was found to be 15 Watt/cm2 for PC3 cells with doxorubicin and tone burst ultrasound at 4 MHz. This is a level achievable by MUTs. The long term vision is to design implantable MUTs for sonodynamic therapy with the goal of improving treatment efficacy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • A. Atchley, L. Frizzell, R.E. Apfel, C.K. Holland, S. Madanshetty, R.A. Roy, Thresholds for cavitation produced in water by pulsed ultrasound, Ultrasonics 25, 280–285 (1988)

    Article  Google Scholar 

  • B. Bayram, O. Oralkan, A.S. Ergun, E. Haeggstrom, G.G. Yaralioglu, B.T. Khuri-Yakub, Capacitive micromachined ultrasonic transducer design for high power transmission, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52, 326–339 (2005)

    Article  Google Scholar 

  • D.A. Christensen, Ultrasonic Bioinstrumentation (Wiley, New York, 1998), pp. 21–38

    Google Scholar 

  • L. Crum, J. Fowlkes, Acoustic cavitation generated by microsecond pulses of ultrasound, Nature 319, 52–54 (1986)

    Article  Google Scholar 

  • C. Festuccia, G.L. Gravina, A. Angelucci , D. Millimaggi, M. Bologna, Culture conditions modulate cell phenotype and cause selection of subpopulations in PC3 prostate cancer cell line, Anticancer Res. 20(6B), 4367–4371 (2000)

    Google Scholar 

  • H.G. Flynn, Generation of transient cavities in liquids by microsecond pulses of ultrasound, J. Acoust. Soc. Am. 72, 1926–1932 (1982)

    Article  Google Scholar 

  • V. Frenkel, A. Etherington, M. Greene, J. Quijano, J. Xie, F. Hunter, S. Dromi, K.C.P. Li, Delivery of liposomal doxorubicin (Doxil) in a breast cancer tumor model: investigation of potential enhancement by pulsed-high-intensity focused ultrasound exposure, Acad. Radiol. 20, 469–479 (2006)

    Article  Google Scholar 

  • Z.-G. Gao, H.D. Fain, N. Rapoport, Controlled and targeted tumor chemotherapy by micellar-encapsulated drug and ultrasound, J. Control. Release 102, 203–222 (2005)

    Article  Google Scholar 

  • H.R. Guzman, D.X. Nguyen, S. Khan, M.R. Prausnitz, Ultrasound-mediated disruption of cell membranes. I. Quantification of molecular uptake and cell viability, J. Acoust. Soc. Am. 110, 588–596 (2001)

    Article  Google Scholar 

  • G.H. Harrison, E.K. Balcer-Kubiczek, H. Eddy, Potentiation of chemotherapy by low-level ultrasound, Int J. Radiat. Biol. 59, 1453–1466 (1991)

    Article  Google Scholar 

  • Y. Huang, Capacitive micromachined ultrasonic transducers (CMUTs) built with wafer-bonding technology [Ph.D. thesis]: Stanford University; 2005

  • X. Jin, I. Ladabaum, F.L. Degertekin, S. Calmes, B.T. Khuri-Yakub, Fabrication and characterization of surface micromachined capacitive ultrasonic immersion transducers, IEEE J. Microelectromechanical Syst. 8, 100–114 (1999)

    Article  Google Scholar 

  • J. Liu, T.N. Lewis, M.R. Prausnitz, Non-Invasive Assessment and Control of Ultrasound-mediated membrane permeabilization, Farm. Res. 15, 918–924 (1998)

    Google Scholar 

  • P. Loverock, G. ter Haar, M.G. Ormerod, P.R. Imrie, The effect of ultrasound on the cytoxicity of adriamycin, Br. J. Radiol. 63, 542–546 (1990)

    Article  Google Scholar 

  • T.J. Mason, J.P. Lorimer, Applied Sonochemistry: The Uses of Power Ultrasound in Chemistry and Processing (Wiley-VCH, Weinheim, 2002), p. 36

    Google Scholar 

  • D.L. Miller, O.D. Kripfgans, J.B. Fowlkes, P.L. Carson, Cavitation nucleation agents for nonthermal ultrasound therapy, J. Acoust. Soc. Am. 107, 3480–3486 (2000)

    Article  Google Scholar 

  • D.L. Miller, S.V. Pislaru, J.F. Greenleaf, Sonoporation: mechanical DNA delivery by ultrasonic cavitation, Somat. Cell Mol. Genet. 27, 115–134 (2002)

    Article  Google Scholar 

  • S. Mitragotri, J. Farrell, H. Tang, T. Terahara, J. Kost, R. Langer, Determination of threshold energy dose for ultrasound-induced transdermal drug transport, J. Control. Release 63, 41–52 (2000)

    Article  Google Scholar 

  • P. Muralt, J. Baborowski, Micromachined ultrasonic transducers and acoustic sensors based on piezoelectric thin films, Journal of Electroceramics 12, 101–108 (2004)

    Article  Google Scholar 

  • P. Muralt, D. Schmitt, N. Ledermann, J. Baborowski, P.K. Weber, W. Steichen, S. Petitgrand, A. Bosseboeuf, N. Setter, P. Gaucher, Study of PZT Coated Membrane Structures for Micromachined Ultrasonic Transducers in IEEE Ultrasonics Symposium (IEEE, Atlanta, 2001), p. 907

    Google Scholar 

  • G. Myhr, J. Moan, Synergistic and tumour selective effects of chemotherapy and ultrasound treatment, Cancer Lett. 232, 206–213 (2006)

    Article  Google Scholar 

  • C.-D. Ohl, B. Wolfrum, Detachment and sonoporation of adherent HeLa-cells by shock wave-induced cavitation, Biochim. Biophys. Acta 1624, 131–138 (2003)

    Google Scholar 

  • O. Oralkan, A.S. Ergun, C.-H. Cheng, J.A. Johnson, M. Karaman, T.H. Lee, B.T. Khuri-Yakub, Volumetric ultrasound imaging using 2-D CMUT arrays, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50, 1581–1594 (2003)

    Article  Google Scholar 

  • G. Powis, Free radical formation by antitumor quinones, Free Radic. Biol. Med. 6, 63–101 (1989)

    Article  Google Scholar 

  • P. Riesz, T. Kondo, Free radical formation induced by ultrasound and its biological implications, Free Radic. Biol. Med. 13, 247–270 (1992)

    Article  Google Scholar 

  • I. Rosenthal, J.Z. Sostaric, P. Riesz, Sonodynamic therapy—a review of the synergistic effects of drugs and ultrasound, Ultrason. Sonochem. 11, 349–363 (2004)

    Google Scholar 

  • A.H. Saad, G.M. Hahn, Ultrasound enhanced drug toxicity on Chinese hamster ovary cells in vitro, Cancer Res. 49, 5931–5934 (1989)

    Google Scholar 

  • R.K. Schlicher, H. Radhakrishna, T.P. Tolentino, R.P. Apkarian, V. Zarnitsyn, M.R. Prausnitz, Mechanism of intracellular delivery by acoustic cavitation, Ultrasound Med. Biol. 32, 915–924 (2006)

    Article  Google Scholar 

  • K. Shinohara, Thermal ablation of prostate diseases: advantages and limitations, Int. J. Hypertherm. 20(7), 679–697 (2004)

    Article  MathSciNet  Google Scholar 

  • T. Siu, R. Rohling, M. Chiao, Microdevice-based delivery of gene products using sonoporation, Biomedical Microdevices, 9(3), 295–300 (2007)

    Article  Google Scholar 

  • J. Sundaram, B.R. Mellein, S. Mitragotri, An experimental and theoretical analysis of ultrasound-induced permeabilization of cell membranes, Biophys. J. 84, 3087–3101 (2003)

    Article  Google Scholar 

  • C.H. Takimoto, in Topoisomerase Interactive Agents in Cancer: Principles & Practice of Oncology, ed. by V.T. Devita Jr., S. Hellman, S.A. Rosenberg (Lippincott Williams & Wilkins, Philadelphia, 2005), p. 375

    Google Scholar 

  • G. ter Haar, S. Daniels, K. Eastaugh, C.R. Hill, Ultrasonically induced cavitation in vivo, Br. J. Cancer, Suppl. 45, 151–155 (1982)

    Google Scholar 

  • S.-I. Umemura, N. Yumita, Y. Okano, M. Kaneuchi, N. Magario, M. Ishizaki, K. Shimizu, Y. Sano, K. Umemura, R. Nishigaki, Sonodynamically-induced in vitro cell damage enhanced by adriamycin, Cancer Lett. 121, 195–201 (1997)

    Article  Google Scholar 

  • W. Wang, Z.-Z. Bian, Y.-J. Wu, Q.-W. Zhou, Y.-L Miao, Bioeffects of low-frequency ultrasonic gene delivery and safety on cell membrane permeability control, J. Ultrasound Med. 23(12), 1569–1582 (2004)

    Google Scholar 

  • E.L. Yuh, S.G. Shulman, S.A. Mehta, J. Xie, L. Chen, V. Frenkel, M. Bednarski, K.C.P. Li, Delivery of systemic chemotherapeutic agent to tumors by using focused ultrasound: study in a murine model, Radiology 234, 431–437 (2005)

    Article  Google Scholar 

  • V.G. Zarnitsyn, M.R. Prausnitz, Physical parameters influencing optimization of ultrasound-mediated DNA transfection, Ultrasound Med. Biol. 30(4), 527–538 (2004)

    Article  Google Scholar 

  • H. Zhu, J. Miao, Z. Wang, C. Zhao, W. Zhu, Fabrication of ultrasonic arrays with 7 um PZT thick films as ultrasonic emitter for object detection in air, Sens. Actuators, A, Phys. A123–124, 614–619 (2005)

    Google Scholar 

Download references

Acknowledgments

We would like to thank Mr. J. Jackson and Dr. H. Burt at the Faculty of Pharmaceutical Sciences, UBC for their continuous support in laboratory work and advice on this project. We also thank the Biomedical Engineering Department staff at the UBC Hospital for lending us the ultrasound power meter. This project is supported in part by the Canada Foundation for Innovation (202095), National Science and Engineering Research Council Discovery Program (288229-04) and the Faculty of Applied Sciences, UBC (11R41755). MC is supported by Canada Research Chairs Tier 2 Program in MEMS and Nanotechnology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mu Chiao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Siu, T., Rohling, R.N. & Chiao, M. Power density requirement of a 4 MHz micro-ultrasonic transducer for sonodynamic therapy. Biomed Microdevices 10, 89–97 (2008). https://doi.org/10.1007/s10544-007-9113-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-007-9113-z

Keywords

Navigation