Skip to main content
Log in

Microfluidic cell counter/sorter utilizing multiple particle tracing technique and optically switching approach

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

This paper proposes a novel microfluidic system based on a computer controlled digital image processing (DIP) technique and optical tweezers for automatic cell/microparticle recognition, counting and sorting in a continuous flow environment. In the proposed system, the cells/microparticles are focused electrokinetically into a narrow sample stream and are then driven through the region of interest (ROI), where they are recognized and traced in real time using a proprietary DIP system. Synchronized control signals generated by the DIP system are then used to actuate a focused IR laser beam to displace the target cells from the main sample stream into a neighboring sheath flow, which carries them to a downstream collection channel where they are automatically counted. Experimental trials show that the microchip is capable of continuously sorting and counting microparticles with diameters of 5 and 10 μm. In addition, a sample composed of yeast cells and polystyrene (PS) beads is successfully sorted and collected with a 100% of yield ratio and 91.9% of recovery ratio. The proposed system provides a simple, low-cost, high-performance solution for cell manipulation in microfluidic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

\( \overline{V} \) :

particle velocity within the electric-driven flow (pixel/s)

\( \overline{u} \) :

particle velocity in the x-axis direction within the electric-driven flow (pixel/s)

\( \overline{v} \) :

particle velocity in the y-axis direction within the electric-driven flow (pixel/s)

P :

particle position (pixel)

t :

time (s)

Δt :

time interval between two consequent image frame (s)

η :

viscosity of the buffer liquid (N·s/m2)

v :

fluid velocity of the electric-driven flow (m/s)

r :

radius of particle

BOE:

buffered oxide etchant

CCD:

charge coupled device

DI:

deionized water

DIP:

digital image processing

FACS:

fluorescence-activated cell sorters

HCL:

hydrogen chloride

HMI:

human–machine interface

IR:

infrared

LIF:

laser induced fluorescence

MEMS:

micro-electro-mechanical-systems

mM:

millimolar

N.A.:

numerical aperture

PC:

personal computer

ROI:

region of interest

V:

volt

References

  • A. Ashkin, J.M. Dziedzic, J.E. Bjorkholm, S. Chu, Opt. Lett., 11, 288 (1986)

    Article  Google Scholar 

  • B.S. Edwards, T. Oprea, E.R. Prossnitz, L.A. Sklar, Curr. Opin. Chem. Biol. 8, 392 (2004)

    Article  Google Scholar 

  • J. Enger, M. Goksör, K. Ramser, P. Hagberg, D. Hanstorp, Lab Chip, 4, 196 (2004)

    Article  Google Scholar 

  • E. Fallman, S. Schedin, J. Jass, M. Andersson, B.E. Uhlin, O. Axner, Biosens. Bioelectron. 19, 1429 (2004)

    Article  Google Scholar 

  • S. Fiedler, S.G. Shirley, T. Schnelle, G. Fuhr, Anal. Chem. 70, 1909 (1998)

    Article  Google Scholar 

  • A.Y. Fu, C. Spence, A. Scherer, F.H. Arnold, S.R. Quake, Nat. Biotechnol. 17, 1109 (1999)

    Article  Google Scholar 

  • D. Holmes, H. Morgan, N.G. Green, Biosens. Bioelectron. 21, 1621 (2006)

    Article  Google Scholar 

  • A. Ishijima, H. Kojima, T. Funatsu, M. Tokunaga, H. Higuchi, H. Tanaka, T. Yanagida, Cell 92, 161 (1998)

    Article  Google Scholar 

  • G.B. Lee, C.H. Lin, S.C. Chang, J. Micromechanics Microengineering 15, 447 (2005)

    Article  Google Scholar 

  • P.C.H. Li, D.J. Harrison, Anal. Chem. 69, 1564 (1997)

    Article  Google Scholar 

  • C.H. Lin, G.B. Lee, J. Micromechanics Microengineering 13, 447 (2003)

    Article  MathSciNet  Google Scholar 

  • C.H. Lin, G.B. Lee, L.M. Fu, B.H. Hwey, Journal of Microelectromechanical Systems 13, 923 (2004)

    Article  Google Scholar 

  • C.H. Lin, G.B. Lee, Y.H. Lin, G.L. Chang, J. Micromechanics Microengineering 11, 726 (2001)

    Article  Google Scholar 

  • N.H. Maerz, Proc. 6th Annual Symposium ICAR, 195 (1998)

  • C. Mio, T. Gong, A. Terray, D.W.M. Marr, Rev. Sci. Instrum. 71, 2196 (2000)

    Article  Google Scholar 

  • S. Shoji, Electron. Commun. Jpn. 2, 82, 21 (1999)

    Article  Google Scholar 

  • F. Vajda, Mathematical Modelling and Simulation of Industrial and Economic Processes, IEE Colloquium on 1/1 (1994).

  • M.M. Wang, E. Tu, D.E. Raymond, J.M. Yang, H.C. Zhang, N. Hagen, B. Dees, E.M. Mercer, A.H. Forster, I. Kariv, P.J. Marchand, W.F. Butler, Nat. Biotechnol. 23, 83 (2005)

    Article  Google Scholar 

  • J. Wietzorrek, M. Stadler,V. Kachel, Oceans Engineering for Today’s Technology and Tomorrow’s Preservation 1, I/688 (1994).

  • H.-S. Wu, J. Barba, J. Gil, IEEE Trans. Biomed. Eng. 45, 400 (1998)

    Article  Google Scholar 

  • C.Q. Yi, C.W. Li, S.L. Ji, M.S. Yang, Anal. Chim. Acta 560, 1 (2006)

    Article  Google Scholar 

Download references

Acknowledgment

Financial supports from the National Science Council of Taiwan are acknowledged. (NSC 95-2314-B-110-002-MY3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Che-Hsin Lin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, CC., Chen, A. & Lin, CH. Microfluidic cell counter/sorter utilizing multiple particle tracing technique and optically switching approach. Biomed Microdevices 10, 55–63 (2008). https://doi.org/10.1007/s10544-007-9109-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-007-9109-8

Keywords

Navigation