Skip to main content
Log in

Opto-electronic DNA chip-based integrated card for clinical diagnostics

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Clinical diagnostics is one of the most promising applications for microfluidic lab-on-a-chip or lab-on-card systems. DNA chips, which provide multiparametric data, are privileged tools for genomic analysis. However, automation of molecular biology protocol and use of these DNA chips in fully integrated systems remains a great challenge. Simplicity of chip and/or card/instrument interfaces is amongst the most critical issues to be addressed. Indeed, current detection systems for DNA chip reading are often complex, expensive, bulky and even limited in terms of sensitivity or accuracy. Furthermore, for liquid handling in the lab-on-cards, many devices use complex and bulky systems, either to directly manipulate fluids, or to ensure pneumatic or mechanical control of integrated valves. All these drawbacks prevent or limit the use of DNA-chip-based integrated systems, for point-of-care testing or as a routine diagnostics tool. We present here a DNA-chip-based protocol integration on a plastic card for clinical diagnostics applications including: (1) an opto-electronic DNA-chip, (2) fluid handling using electrically activated embedded pyrotechnic microvalves with closing/opening functions. We demonstrate both fluidic and electric packaging of the optoelectronic DNA chip without major alteration of its electronical and biological functionalities, and fluid control using novel electrically activable pyrotechnic microvalves. Finally, we suggest a complete design of a card dedicated to automation of a complex biological protocol with a fully electrical fluid handling and DNA chip reading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • R.C. Anderson, X. SU, G.J. Bogdan, J. Fenton, Nucleic Acids Res. 28(12), e60 (2000)

    Article  Google Scholar 

  • P.-A. Auroux, Y. Koc, A. deMello, A. Manz, P.J.R. Day, Lab Chip 4, 534–546 (2004)

    Article  Google Scholar 

  • F. Azek, C. Grossiord, M. Joannes, B. Limoges, P. Brossier, Anal. Biochem. 284, 107–113 (2000)

    Article  Google Scholar 

  • M.A. Burns, B.N. Johnson, S.N. Brahmasandra, K. Handique, J.R. Webster, M. Krishnan, T.S. Sammarco, P.M. Man, D. Jones, D. Heldsinger, C.H. Mastrangelo, D.T. Burke, Science 484–487 (1998)

  • T.G. Drummond, M.G. Hill, J.K. Barton, Nat. Biotechnol. 21, 1192–1199 (2003)

    Article  Google Scholar 

  • P. Dubois, G. Marchand, Y. Fouillet, J. Berthier, T. Douki, F. Hassine, S. Gmouh, M. Vaultier, Anal. Chem. 78, 4909–4917 (2006)

    Article  Google Scholar 

  • D. Erickson, D. Li, Anal. Chim. Acta 507, 11–26 (2004)

    Article  Google Scholar 

  • P.D.I. Fletcher, S.J. Haswell, E. Pombo-Villar, B.H. Warrington, P. Watts, S.Y.F. Wong, X. Zhang, Tetrahedron 58, 4735–4757 (2002)

    Article  Google Scholar 

  • A. Gulliksen, L. Solli, F. Karlsen, H. Rogne, E. Hovig, T. Nordstrom, R. Sirevag, Anal. Chem. 76, 9–14 (2004)

    Article  Google Scholar 

  • S. Hwang, E. Kim, J. Kwak, Anal. Chem. 77, 579–584 (2005)

    Article  Google Scholar 

  • A. Laayoun, M. Kotera, I. Sothier, E. Trévisiol, E. Bernal-Méndez, C. Bourget, L. Menou, J. Lhomme, A. Troesch, Bioconjug. Chem. 14(6), 1298–1306 (2003)

    Article  Google Scholar 

  • J. Liu, M. Enzelberger, S. Quake, Electrophoresis 23, 1531–1536 (2002a)

    Article  Google Scholar 

  • Y. Liu, C.B. Rauch, R.L. Stevens, R. Lenigk, J. Yang, D.B. Rhine, P. Grodzinski, Anal. Chem. 74, 3063–3070 (2002b)

    Article  Google Scholar 

  • F. Mallard, G. Marchand, F. Ginot, R. Campagnolo, Biosens. Bioelectron. 20(9), 1813–1820 (2005)

    Article  Google Scholar 

  • G. Marchand, C. Delattre, R. Campagnolo, P. Pouteau, F. Ginot, Anal. Chem. 77, 5189–5195 (2005)

    Article  Google Scholar 

  • C.A. Marquett, L.J. Blum, Anal Bioanal Chem 385, 546–554 (2006)

    Article  Google Scholar 

  • K.W. Oh, C. Park, K. Namkoong, J. Kim, K-S. Ock, S. Kim, Y-A. Kim, Y-K. Cho, C. Ko, Lab Chip 5, 845–850 (2005)

    Article  Google Scholar 

  • M. Pitié, C.J. Burrows, B. Meunier, Nucleic Acids Res. 28, 4856–4864 (2000)

    Article  Google Scholar 

  • J.M. Vaal, K. Mechant, R.L. Rill, Nucleic Acids Res. 19, 3383–3388 (1991)

    Article  Google Scholar 

  • J. Wang, Anal. Chim. Acta. 469, 63–71 (2002)

    Article  Google Scholar 

  • J. Wang, M. Jiang, E. Palecek, Bioelectrochem. Bioenerg. 4, 477–480 (1999)

    Article  Google Scholar 

  • P. Watts, S. Haswell, Chem. Soc. Rev. 34, 235–246 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Caroline Fontelaye and Bernard Beneyton for expert assistance in experiments. We also thank Françoise Vinet for critical reading of the manuscript, and helpful discussions. This work was supported by the French Ministère de l’Industrie (MINEFI/DiGITID, grant no. 01 4 93 0662).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gilles Marchand or Patrick Broyer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marchand, G., Broyer, P., Lanet, V. et al. Opto-electronic DNA chip-based integrated card for clinical diagnostics. Biomed Microdevices 10, 35–45 (2008). https://doi.org/10.1007/s10544-007-9107-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-007-9107-x

Keywords

Navigation