Skip to main content
Log in

Generation of monodisperse alginate microbeads and in situ encapsulation of cell in microfluidic device

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

A microfluidic method for the in situ production of monodispersed alginate hydrogels using chaotic mixing is described. Aqueous droplets comprising of alginate and calcium as a cross-linking agent were formed as an immiscible continuous phase, and then the alginate and calcium in the droplet came into contact and were rapidly mixed. Gelation of the hydrogel was achieved in situ by the chaotic mixing of the droplets in the microfluidic device. Important operating parameters included: the capillary number (Ca) and the flow rate of the continuous phase, which mainly influenced the formation of three distinctive flow regimes, such as fluctuation, stable droplets, and laminar flow. Under the stable formation of droplets regime, monodispersed alginate microbeads having a narrow size distribution (below 3% of CV) were produced in the microfluidic device and the size of the microbeads, ranging from 60 to 95 μm, could be easily modulated by varying the flow rate, viscosity, and interfacial tension. In addition, this approach can be applied to the encapsulation of yeast cells in alginate hydrogels with a high monodispersity. This simple microfluidic technique for the production of monodispersed hydrogels and encapsulation of biomolecules shows strong potential for use in biosensors, cell sensors, drug delivery systems, and cell transplantation applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • M. Ben-Moshe, V.L. Alexeev, S.A. Asher, Anal. Chem. 78, 5149 (2006)

    Article  Google Scholar 

  • S.M. Borisov, O.S. Wolfbeis, Anal. Chem. 78, 5094 (2006)

    Article  Google Scholar 

  • S. Brahim, D. Narinesingh, A. Guiseppi-Elie, Biosens. Bioelectron. 17, 973 (2002)

    Article  Google Scholar 

  • A. Desai, W.S. Kisaalita, C. Keith, Z.Z. Wu, Biosens. Bioelectron. 21, 1483 (2006)

    Article  Google Scholar 

  • A. Dove, Nat. Biotechnol. 20, 339 (2002)

    Article  Google Scholar 

  • R. Dreyfus, P. Tabeling, H. Willaime, Phys. Rev. Lett. 90, 144505 (2003)

    Article  Google Scholar 

  • S. Frykman, F. Srienc, Biotechnol. Bioeng. 59, 214 (1998)

    Article  Google Scholar 

  • A.V. Goponenko, S.A. Asher, J. Am. Chem. Soc. 127, 10753 (2005)

    Article  Google Scholar 

  • J.P. Halle, F.A. Leblond, J.F. Pariseau, P. Jutras, M.J. Brabant, Y. Lepage, Cell. Transplant. 3, 365 (1994)

    Google Scholar 

  • K.S. Huang, T.H. Lai, Y.C. Lin, Lab. Chip. 6, 954 (2006)

    Article  Google Scholar 

  • H.L. Ma, T.H. Chen, L. Low-Tone Ho, S.C. Hung, J. Biomed. Mater. Res. A. 74, 439 (2005)

    Google Scholar 

  • Z. Nie, S. Xu, M. Seo, P.C. Lewis, E. Kumacheva, J. Am. Chem. Soc. 127, 8058 (2005)

    Article  Google Scholar 

  • L.W. Norton, E. Tegnell, S.S. Toporek, W.M. Reichert, Biomaterials. 26, 3285 (2005)

    Article  Google Scholar 

  • S. Sakai, K. Kawabata, T. Ono, H. Ijima, K. Kawakami, Biotechnol. Prog. 21, 994 (2005)

    Article  Google Scholar 

  • C.M. Silva, A.J. Ribeiro, I.V. Figueiredo, A.R. Goncalves, F. Veiga, Int. J. Pharm. 311, 1 (2006)

    Article  Google Scholar 

  • H. Song, J.D. Tice, R.F. Ismagilov, Angew. Chem. Int. Ed. Engl. 42, 768 (2003)

    Article  Google Scholar 

  • S. Sugiura, T. Oda, Y. Izumida, Y. Aoyagi, M. Satake, A. Ochiai, N. Ohkohchi, M. Nakajima, Biomaterials 26, 3327 (2005)

    Article  Google Scholar 

  • S. Sugiura, T. Oda, Y. Aoyagi, R. Matsuo, T. Enomoto, K. Matsumoto, T. Nakamura, M. Satake, A. Ochiai, N. Ohkohchi, M. Nakajima, Biomed. Microdevices. 9, 91 (2007)

    Article  Google Scholar 

  • Y.C. Tan, K. Hettiarachchi, M. Siu, Y.R. Pan, A.P. Lee, J. Am. Chem. Soc. 128, 5656 (2006)

    Article  Google Scholar 

  • J.D. Tice, A.D. Lyon, R.F. Ismagilov, Anal. Chim. Acta. 507, 73 (2004)

    Article  Google Scholar 

  • S. Wiggins, J.M. Ottino, Philos. Transact. A Math Phys. Eng. Sci. 362, 937 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  • B. Xu, H. Iwata, M. Miyamoto, A.N. Balamurugan, Y. Murakami, W. Cui, M. Imamura, K. Inoue, Cell Transplant. 10, 403 (2001)

    Google Scholar 

  • J.H. Xu, G.S. Luo, S.W. Li, G.G. Chen, Lab. Chip. 6, 131 (2006)

    Article  Google Scholar 

  • S. Xu, Z. Nie, M. Seo, P. Lewis, E. Kumacheva, H.A. Stone, P. Garstecki, D.B. Weibel, I. Gitlin, G.M. Whitesides, Angew. Chem. Int. Ed. Engl. 44, 724 (2005)

    Article  Google Scholar 

  • H. Zhang, E. Tumarkin, R. Peerani, Z. Nie, R.M. Sullan, G.C. Walker, E. Kumacheva, J. Am. Chem. Soc. 128, 12205 (2006)

    Article  Google Scholar 

  • M. Zourob, S. Mohr, A.G. Mayes, A. Macaskill, N. Perez-Moral, P.R. Fielden, N.J. Goddard, Lab. Chip. 6, 296 (2006)

    Article  Google Scholar 

Download references

Acknowledgment

This study was supported by a grant from the Korea Health 21 R&D Project, Ministry of Health & Welfare, Republic of Korea (Project No: A062254).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Soo Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, CH., Jung, JH., Rhee, Y.W. et al. Generation of monodisperse alginate microbeads and in situ encapsulation of cell in microfluidic device. Biomed Microdevices 9, 855–862 (2007). https://doi.org/10.1007/s10544-007-9098-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-007-9098-7

Keywords

Navigation