Skip to main content

Advertisement

Log in

Microfluidic device for cell capture and impedance measurement

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

This work presents a microfluidic device to capture physically single cells within microstructures inside a channel and to measure the impedance of a single HeLa cell (human cervical epithelioid carcinoma) using impedance spectroscopy. The device includes a glass substrate with electrodes and a PDMS channel with micro pillars. The commercial software CFD–ACE+ is used to study the flow of the microstructures in the channel. According to simulation results, the probability of cell capture by three micro pillars is about 10%. An equivalent circuit model of the device is established and fits closely to the experimental results. The circuit can be modeled electrically as cell impedance in parallel with dielectric capacitance and in series with a pair of electrode resistors. The system is operated at low frequency between 1 and 100 kHz. In this study, experiments show that the HeLa cell is successfully captured by the micro pillars and its impedance is measured by impedance spectroscopy. The magnitude of the HeLa cell impedance declines at all operation voltages with frequency because the HeLa cell is capacitive. Additionally, increasing the operation voltage reduces the magnitude of the HeLa cell because a strong electric field may promote the exchange of ions between the cytoplasm and the isotonic solution. Below an operating voltage of 0.9 V, the system impedance response is characteristic of a parallel circuit at under 30 kHz and of a series circuit at between 30 and 100 kHz. The phase of the HeLa cell impedance is characteristic of a series circuit when the operation voltage exceeds 0.8 V because the cell impedance becomes significant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • H. Andersson, W. van der Wijngaart, P. Enoksson, G. Stemme, Sens. Actuators 67, 203–208 (2000)

    Article  Google Scholar 

  • H.E. Ayliffe, A.B. Frazier, R.D. Rabbitt, IEEE J. Microelectromech. Syst. 8, 50–57 (1999)

    Article  Google Scholar 

  • O. Bakajin, R. Carlons, C. Chou, S. Chan, C. Gabel, J. Knight, T. Cox, R. Austin, in MicroTAS, 1998, pp. 193–198

  • J.Z. Bao, C.C. David, R.E. Schmukler, IEEE Trans. Biomed. Eng. 40(4), 364–378 (1993)

    Article  Google Scholar 

  • R. Carlson, C. Gabel, S. Chan, R. Austin, Phys. Rev. Lett. 79, 2149–2152 (1997)

    Article  Google Scholar 

  • I.H.G.S. Consortium, Nature 409, 860–921 (2001)

    Article  Google Scholar 

  • S. Fiedler, S. Shirley, T. Schnelle, G. Fuhr, Anal. Chem. 70, 1909–1915 (1998)

    Article  Google Scholar 

  • J.-J. Gau, E.H. Lan, B. Dunn, C.-M. Ho, J.C.S. Woo, Biosens. Bioelectron. 16, 745–755 (2001)

    Article  Google Scholar 

  • S. Gawad, K. Cheung, U. Seger, A. Bertsch, P. Renaud, Lab Chip 4, 241–251 (2004)

    Article  Google Scholar 

  • I. Giaever, C.R. Keese, Chemtech 22, 116–125 (1992)

    Google Scholar 

  • K.H. Gilchrist, L. Giovangrandi, G.T.A. Kovacs, in The 11th International Conference on Solid-State Sensors and Actuators, Munich, Germany, June 2001, pp. 10–14

  • K.H. Gilchrist, L. Giovangrandi, R.H. Whittington, G.T.A. Kovacs, Biosens. Bioelectron. 20, 1397–1406 (2005)

    Article  Google Scholar 

  • R. Gomez, R. Bashir, A. Sarikaya, M.R. Ladisch, J. Sturgis, J.P. Robinson, T. Geng, A.K. Bhunia, H.L. Apple, S. Wereley, Biomed. Microdev. 3, 201–209 (2001)

    Article  Google Scholar 

  • Y. Huang, K. Ewalt, M. Tirado, R. Haigis, A. Forster, D. Ackley, M. Heller, J. O’Connell, M. Krihak, Anal. Chem. 73, 1549–1559 (2001)

    Article  Google Scholar 

  • L.-S. Jang, Y.-J. Li, S.-J. Lin, Y.-C. Hsu, W.-S. Yao, M.-C. Tsai, C.-C. Hou, Biomed. Microdev. 9(2), 185–194 (2007)

    Article  Google Scholar 

  • H. Liang, W.H. Wright, C.L. Rieder, E.D. Salmon, G. Profeta, J. Andrews, Y. Liu, G.J. Sonek, M.W. Berns, Exp. Cell Res. 213, 308–312 (1994)

    Article  Google Scholar 

  • C.-S. Liao, G.-B. Lee, H.-S. Liu, T.-M. Hsieh, C.-H. Luo, Nucleic Acids Res. 33(18), e156–e162 (2005)

    Article  Google Scholar 

  • M. Niikura, A. Maeda, T. Ikegami, M. Saijo, I. Kurane, S. Morikawa, Arch. Virol. 149, 1279–1292 (2004)

    Article  Google Scholar 

  • C. Rusu, R. van’t Oever, M. de Boer, H. Jansen, J. Berenschot, J. Bennink, J. Kanger, B. de Grooth, M. Elwenspoek, J. Grever, J. Brugger, A. van den Berg, J. Microelectromech. Syst. 10, 238–247 (2001)

    Article  Google Scholar 

  • R. Schmukler, G. Johnson, J.Z. Bao, C.C. Davis, in IEEE Engineering in Medicine & Biology Society 10 th Annual Conference, vol. 10, no. 2, 1988, pp. 899–901

  • J.C.e.a. Venter, Science 291, 1304–1351 (2001)

    Article  Google Scholar 

  • N. Verma, M. Singh, Biosens. Bioelectron. 18, 1219–1224 (2003)

    Article  Google Scholar 

  • J.C. Weaver, Y.A. Chizmadzhev, Bioelectrochem. Bioenergetics 41, 135–160 (1996)

    Article  Google Scholar 

  • J. Xu, L. Wu, M. Huang, W. Yang, J. Cheng, X. Wang, in MicroTAS, 2001, pp. 565–566

  • L. Yang, C. Ruan, Y. Li, Biosens. Bioelectron. 19, 495–502 (2003)

    Article  Google Scholar 

  • C. Yao, C. Sun, Y. Mi, S. Wang, L. Xiong, Journal of Chongqing University 27, 33–35 (2004)

    Google Scholar 

  • L. Ye, T.A. Martin, C. Parr, G.M. Harrison, R.E. Mansel,W.G. Jiang, J. Cell. Physiol. 196(2), 362–369 (2003)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Council (NSC 95-2221-E-006-025). Additionally, this work made use of Shared Facilities supported by the Program of Top 100 Universities Advancement, Ministry of Education, Taiwan. The authors would like to thank the Center for Micro/Nano Science and Technology, National Cheng Kung University, Tainan, Taiwan, for equipment access and technical support. The authors also would like to thank National Center for High-Performance Computing, Tainan, Taiwan, for the support of CFD–ACE+.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling-Sheng Jang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jang, LS., Wang, MH. Microfluidic device for cell capture and impedance measurement. Biomed Microdevices 9, 737–743 (2007). https://doi.org/10.1007/s10544-007-9084-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-007-9084-0

Keywords

Navigation