Abstract
A dual-beam fiber laser trap, termed the optical stretcher when used to deform objects, has been combined with a capillary-based microfluidic system in order to serially trap and deform biological cells. The design allows for control over the size and position of the trap relative to the flow channel. Data is recorded using video phase contrast microscopy and is subsequently analyzed using a custom edge fitting routine. This setup has been regularly used with measuring rates of 50–100 cells/h. One such experiment is presented to compare the distribution of deformability found within a normal epithelial cell line to that of a cancerous one. In general, this microfluidic optical stretcher can be used for the characterization of cells by their viscoelastic signature. Possible applications include the cytological diagnosis of cancer and the gentle and marker-free sorting of stem cells from heterogeneous populations for therapeutic cell-based approaches in regenerative medicine.
This is a preview of subscription content, access via your institution.





References
H. Andersson, A. van den Berg, Sens. Actuators, B 92, 315–325 (2003)
A. Ashkin, Phys. Rev. Lett. 24, 156–159 (1970)
A. Ashkin, J.M. Dziedzic, Phys. Rev. Lett. 30(4), 139–142 (1973)
P.B. Bareil, Y.L. Sheng, A. Chiou, Opt. Express 14(25), 12503–12509 (2006)
P.Y. Chiou, A.T. Ohta, M.C. Wu, Nature 436, 370–372 (2005)
H.-P. Chou, C. Spence, A. Scherer, S. Quake, Proc. Natl. Acad. Sci. U. S. A. 96, 11–13 (1999)
A. Constable, J. Kim, J. Mervis, F. Zarinetchi, M. Prentiss, Opt. Lett. 18(21), 1867–1869 (1993)
S. Cran-McGreehin, T.F. Krauss, K. Dholakia, Lab Chip 6(9), 1122–1124 (2006)
S. Fiedler, S.G. Shirley, T. Schnelle, G. Fuhr, Anal. Chem. 70, 1909–1915 (1998)
F.-U. Gast, P.S. Dittrich, P. Schwille, M. Weigel, M. Mertig, J. Opitz, U. Queitsh, S. Diez, B. Lincoln, F. Wottawah, S. Schinkinger, J. Guck, J. Käs, J. Smolinski, K. Salchert, C. Werner, C. Duschl, M.S. Jäger, K. Uhlig, P. Geggier, S. Howitz, Microfluid. Nanofluid. 2(1), 21–36 (2006)
R.C. Gauthier, M. Friesen, T. Gerrard, W. Hassouneh, P. Koziorowski, D. Moore, K. Oprea, S. Uttamalingam, Appl. Opt. 42, 1610–1619 (2003)
J. Guck, R. Ananthakrishnan, H. Mahmood, T.J. Moon, C.C. Cunningham, J. Käs, Biophys. J. 81, 767–784 (2001)
J. Guck, R. Ananthakrishnan, T.J. Moon, C.C. Cunningham, J. Käs, Phys. Rev. Lett. 84(23), 5451–5454 (2000)
J. Guck, H. Erickson, D. Mitchell, M. Romeyke, S. Schinkinger, F. Wottawah, B. Lincoln, J. Käs, S. Ulvick, C. Bilby, Biophys. J. 88, 5 (2005)
P.R.T. Jess, V. Garcés-Chávez, D. Smith, M. Mazilu, L. Paterson, A. Riches, C.S. Herrington, W. Sibbett, K. Dholakia, Opt. Express 14, 5779–5791 (2006)
M.D. Johnson, J.A. Torri, M.E. Lippman, R.B. Dickson, Exp. Cell Res. 247, 105–113 (1999)
G. Knöner, A. Ratnapala, T.A. Nieminen, C.J. Vale, N.R. Heckenberg, H. Rubinsztein-Dunlop, Lab Chip 6, 1545–1547 (2006)
B. Lincoln, H.M. Erickson, S. Schinkinger, F. Wottawah, D. Mitchell, S. Ulvick, C. Bilby, J. Guck, Cytometry, Part A 59, 203–209 (2004)
H. Lee, A.M. Purdon, R.M. Westervelt, Appl. Phys. Lett. 85(6), 1063–1065 (2004)
Y.P. Liu, C. Li, K.K. Liu, A.C.K. Lai, J. Biomech. Eng. – Trans. ASME 128(6), 830–836 (2006)
E.R. Lyons, G.J. Sonek, Appl. Phys. Lett. 66, 1584–1586 (1995)
M.P. MacDonald, G.C. Spalding, K. Dholakla, Nature 426, 421–424 (2003)
M.J. Madou, Fundamentals of Microfabrication: The Science of Miniaturization (CRC Press, Boca Raton, FL, 2002), pp. 3–9
S. Park, D. Koch, R. Cardenas, J. Käs, C.K. Shih, Biophys. J. 89, 4330–4342 (2005)
G. Roosen, C. Imbert, Phys. Lett., A 59, 6–8 (1976)
E. Sidick, S.D. Collins, A. Knoesen, Appl. Opt. 36, 6423–6433 (1997)
A.E. Siegman, Lasers (University Science Books, Mill Valley, CA, 1986), pp. 581–589
W. Singer, M. Frick, T. Haller, S. Bernet, M. Ritsch-Marte, P. Dietl, Biophys. J. 84, 1344–1351 (2003)
K.J. VanVliet, G. Bao, S. Suresh, Acta Mater. 51, 5881–5905 (2003)
M.T. Wei, K.T. Yang, A. Karmenyan, A. Chiou, Opt. Express 14(7), 3056–3064 (2006)
F. Wottawah, S. Schinkinger, B. Lincoln, R. Ananthakrishnan, M. Romeyke, J. Guck, J. Käs, Phys. Rev. Lett. 94(9), 98103 (2005a)
F. Wottawah, S. Schinkinger, B. Lincoln, S. Ebert, K. Müller, F. Sauer, J. Guck, Acta Biomater. 1(3), 263–271 (2005b)
Acknowledgements
The authors would like to thank Robert Austin, Grant Willson, Coley Chappell, Chieze Ibeneche, Benton Pahlka, Thomas Schnelle, Torsten Müller, Gabriele Gradl, Steffen Howitz, Allen Ehrlicher, and Josef Käs for technical assistance, advice, and helpful discussions. Financial support was provided by an R&D grant (SAB, Project 9889/1519) from the European Fund for Regional Development (EFRE) 2000–2006 and the state of Saxony.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Lincoln, B., Schinkinger, S., Travis, K. et al. Reconfigurable microfluidic integration of a dual-beam laser trap with biomedical applications. Biomed Microdevices 9, 703–710 (2007). https://doi.org/10.1007/s10544-007-9079-x
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10544-007-9079-x
Keywords
- Optical traps
- Optical stretcher
- Microfluidics
- Cell handling
- Cancer diagnostics