Skip to main content
Log in

Microfluidic self-assembly of live Drosophila embryos for versatile high-throughput analysis of embryonic morphogenesis

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

A method for assembling Drosophila embryos in a microfluidic device was developed for studies of thermal perturbation of early embryonic development. Environmental perturbation is a complimentary method to injection of membrane-impermeable macromolecules for assaying genetic function and investigating robustness in complex biochemical networks. The development of a high throughput method for perturbing embryos would facilitate the isolation and mapping of signaling pathways. We immobilize Drosophila embryos inside a microfluidic device on minimal potential-energy wells created through surface modification, and thermally perturb these embryos using binary laminar flows of warm and cold solutions. We self-assemble embryos onto oil adhesive pads with an alcohol surfactant carrier fluid (detachment: 0.1 mL/min), and when the surfactant is removed, the embryo-oil adhesion increases to ∼25 mL/min flow rates, which allows for high velocities required for sharp gradients of thermal binary flows. The microfluidic thermal profile was numerically characterized by simulation and experimentally characterized by fluorescence thermometry. The effects of thermal perturbation were observed to induce abnormal morphogenetic movements in live embryos by using time-lapse differential interference contrast (DIC) microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • M.D. Abramoff, P.J. Magelhaes et al., Biophoton. Int. 11(7), 36–42 (2004)

    Google Scholar 

  • J.R. Anderson, D.T. Chiu et al., Anal. Chem. 72(14), 3158–3164 (2000)

    Article  Google Scholar 

  • R.W. Bernstein, X.J. Zhang et al., μTAS (Nara, Japan, 2002)

    Google Scholar 

  • K. Brakke, Surface Evolver is an Interactive Program for the Modeling of Liquid Surfaces Shaped by Various Forces and Constraints (Mathematics Department, Susquehanna University, Selinsgrove, PA, 2005)

    Google Scholar 

  • T.D. Brown, J. Biomech. 33(1), 3–14 (2000)

    Article  Google Scholar 

  • R.W. Carthew, Curr. Opin. Cell Biol. 13(2), 244–248 (2001)

    Article  Google Scholar 

  • F. Caruso, H. Lichtenfeld et al., J. Am. Chem. Soc. 120(33), 8523–8524 (1998)

    Article  Google Scholar 

  • D. Debarre, W. Supatto et al., Opt. Lett. 29(24), 2881–2883 (2004)

    Article  Google Scholar 

  • A. Eldar, B.Z. Shilo et al., Curr. Opin. Genet. Dev. 14, 435–443 (2004)

    Article  Google Scholar 

  • J. Fang, K.F. Böhringer, J. Micromechanics Microengineering 16, 721–730 (2006)

    Article  Google Scholar 

  • V. Foe, B.M. Alberts, J. Cell Sci. 16(1), 31–70 (1983)

    Google Scholar 

  • E. Freire, T. Coelho-Sampaio, J. Biol. Chem. 275(2), 817–822 (2000)

    Article  Google Scholar 

  • V. Girish, A. Vijayalakshmi, Indian J. Cancer 41(1), 47 (2004)

    Google Scholar 

  • B.A. Grzybowski, X. Jiang et al., Phys. Rev. E Stat. Nonlin. Soft. Matter. Phys. 64(1 Pt 1), 011603 (2001)

    Google Scholar 

  • Halocarbon-Products-Corporation Frequently Asked Questions, about Halocarbon 700 (2006)

  • A. Hatch, A.E. Kamholz et al., Nat. Biotech. 19(5), 461–465 (2001)

    Article  Google Scholar 

  • R.F. Ismagilov, A.D. Stroock et al., Appl. Phys. Lett. 76(17), 2376–2378 (2000)

    Article  Google Scholar 

  • A.E. Kamholz, B.H. Weigl et al., Anal. Chem. 71(23), 5340–5347 (1999)

    Article  Google Scholar 

  • K. Kendall, J. Phys. D: Phys. 4, 1186–1195 (1971)

    Article  Google Scholar 

  • E.M. Lucchetta, J.H. Lee et al., Nature 434(7037), 1134–1138 (2005)

    Article  Google Scholar 

  • E.M. Lucchetta, M.S. Munson et al., Lab. Chip. 6(2), 185–190 (2006)

    Article  Google Scholar 

  • Microchem-Corporation. SU8-2000 Photoresist Technical Literature. (2006)

  • J. Niemuth, R. Wolf, Dev. Genes Evol. 204(7–8), 444–452 (1995)

    Google Scholar 

  • C. Nusslein-Volhard, E. Wieschaus, Nature 287(5785), 795–801 (1980)

    Article  Google Scholar 

  • S.R. Oliver, T.D. Clark et al., J. Am. Chem. Soc. 123(33), 8119–8120 (2001)

    Article  Google Scholar 

  • N.A. Peppas, J.J. Sahlin, Biomaterials 17(16), 1553–1561 (1996)

    Article  Google Scholar 

  • G.M. Rubin, E.B. Lewis, Science 287(5461), 2216–2218 (2000)

    Article  Google Scholar 

  • U. Srinivasan, D. Liepmann et al., J. MEMS 10(1), 17–24 (2001)

    Google Scholar 

  • C.E. Stauffer, J. Phys. Chem. 69(6), 1933–1938 (1965)

    Article  Google Scholar 

  • M. Sugihara-Seki, Biorheology 37(5–6), 341–359 (2000)

    Google Scholar 

  • M. Sugihara-Seki, Biorheology 38(1), 3–13 (2001)

    Google Scholar 

  • J.J. Talghader, J.K. Tu et al., IEEE Photonics Technol. Lett. 7(11), 1321–1324 (1995)

    Article  Google Scholar 

  • G.M. Walker, H.C. Zeringue et al., Lab. Chip. 4(2), 91–97 (2004)

    Article  Google Scholar 

  • X. Xiong, Y. Hanein et al., J. MEMS 12(2), 117–127 (2003)

    Google Scholar 

  • H.J. Yeh, J.S. Smith, IEEE Photonics Technol. Lett. 6, 706–708 (1994)

    Article  Google Scholar 

  • G. Yucel, S. Small, Curr. Biol. 16(1), R29–R31 (2006)

    Article  Google Scholar 

  • X.J. Zhang, C.-C. Chen et al., J. MEMS 14, 1187–1197 (2005)

    Google Scholar 

Download references

Acknowledgements

We would like to thank Welch Foundation, SPRING, and the Center for Nano and Molecular Science and Technology (CNM) at UT Austin for their facilities including the goniometer setup. We would also like to thank Professor Grant Wilson and Dr. Peter Carmichael for their discussions on surfactants and interfacial tension, and Ashwini Gopal for facilitating the fabrication of the self-assembly pads suitable for DIC imaging. This study was supported in part by the March of Dimes Basil O1Connor Award and the National Institute of Health, grant RO1GM067013 (to J.C.S) and the National Science Foundation Nanoscale Exploratory Research Program ECS-0609413 (to X.J.Z).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaojing Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dagani, G.T., Monzo, K., Fakhoury, J.R. et al. Microfluidic self-assembly of live Drosophila embryos for versatile high-throughput analysis of embryonic morphogenesis. Biomed Microdevices 9, 681–694 (2007). https://doi.org/10.1007/s10544-007-9077-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-007-9077-z

Keywords

Navigation