Skip to main content
Log in

Membrane-activated microfluidic rotary devices for pumping and mixing

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Microfluidic devices are operated at a low-Reynolds-number flow regime such that the transportation and mixing of fluids are naturally challenging. There is still a great need to integrate fluid control systems such as pumps, valves and mixers with other functional microfluidic devices to form a micro-total-analysis-system. This study presents a new pneumatic microfluidic rotary device capable of transporting and mixing two different kinds of samples in an annular microchannel by using MEMS (Micro-electro-mechanical-systems) technology. Pumping and mixing can be achieved using a single device with different operation modes. The micropump has four membranes with an annular layout and is compact in size. The new device has a maximum pumping rate of 165.7 μL/min at a driving frequency of 17 Hz and an air pressure of 30 psi. Experimental data show that the pumping rate increases as higher air pressure and driving frequency are applied. In addition, not only can the microfluidic rotary device work as a peristaltic pumping device, but it also is an effective mixing device. The performance of the micromixer is extensively characterized. Experimental data indicate that a mixing index as high as 96.3% can be achieved. The developed microfluidic rotary device can be easily integrated with other microfluidic devices due to its simple and reliable PDMS fabrication process. The development of the microfluidic rotary device can be promising for micro-total-analysis-systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

C :

Concentration

CCD:

Charge coupled device

C o :

Initial fluorescent concentration

C + :

Normalized concentration (=C/C o)

C :

Normalized complete mixed concentration (=0.5)

DI:

Deionized

ELISA:

Enzyme-linked immunosorbent assay

EMV:

Electromagnetic valve

f EMV :

Driving frequency of the electromagnetic valve (Hz)

f mixing :

Driving frequency of the rotary micromixer (Hz)

FITC:

Fluorescein isothiocyanate

H :

Channel width

LCD:

Liquid crystal display

MEMS:

Micro-electro-mechanical-systems

PDMS:

Polydimethylsiloxane

PR:

Photoresist

X :

Longitudinal coordinate

Y + :

Normalized transversal coordinate (=y/h)

Y :

Transversal coordinate

σ :

Mixing index

References

  • C.C. Chang, R.J. Yang, J. Micromechanics Microengineering 14, 550 (2004)

    Article  Google Scholar 

  • H.P. Chou, M.A. Unger, A. Scherer, S.R. Quake, in Proceedings of the Solid State Actuator and Sensor Workshop, 2000

  • H.P. Chou, M.A. Unger, S.R. Quake, Biomed. Microdevices 3, 323 (2001)

    Article  Google Scholar 

  • D.C. Duffy, H.L. Gillis, J. Lin, N.F. Sheppard, G.J. Kellogg, Anal. Chem. 15, 4669 (1999)

    Article  Google Scholar 

  • A.Y. Fu, H.P. Chou, C. Spence, F.H. Arnold, S.R. Quake, Anal. Chem. 74, 2451 (2002)

    Article  Google Scholar 

  • I. Glasgow, N. Aubry, Lab Chip 3, 114 (2003)

    Article  Google Scholar 

  • P. Gravesen, Y. Branebjerg, O.S. Jensen, J. Micromechanics Microengineering 3, 168 (1993)

    Article  Google Scholar 

  • B.L. Gray, D. Jaeggi, N.J. Mourlas, B.P. Van Drieenhuizen, K.R. Williams, N. Maluf, G.T.A. Kovacs, Sens. Actuators, A 77, 57 (1998)

    Article  Google Scholar 

  • S. Hardt, F. Schonfeld, AIChE J. 49, 578 (2003)

    Article  Google Scholar 

  • V. Hessel, S. Hardt, H. Lowe, F. Schonfeld, AIChE J. 49, 566 (2003)

    Article  Google Scholar 

  • P. Hinsmann, J. Frank, P. Svasek, M. Harasek, B. Lendl, Lab Chip 1, 16 (2001)

    Article  Google Scholar 

  • C.C. Huang, S.B. Huang, G.B. Lee, J. Micromechanics Microengineering 16, 2265 (2006)

    Article  Google Scholar 

  • B. Husband, M. Bu, A.G.R. Evans, T. Melvin, J. Micromechanics Microengineering 14, 64 (2004)

    Article  Google Scholar 

  • H. Katoua, R. Miyakea, K. Kambarab, K. Kawaseb, H. Uchidab, Chem. Eng. Sci. 60, 5519 (2005)

    Article  Google Scholar 

  • M. Kochy, D. Chatelainz, A.G.R. Evan, A. Brunnschweiler, J. Micromechanics Microengineering 8, 123 (1998)

    Article  Google Scholar 

  • C.Y. Lee, G.B. Lee, L.M. Fu, H.K. Lee, R.J. Yang, J. Micromechanics Microengineering 14, 1390 (2004)

    Article  Google Scholar 

  • C.A. Li, T.N. Chen, Sens. Actuators, B 106, 871 (2005)

    Article  Google Scholar 

  • Y. Lin, G.J. Gerfen, D.L. Rousseau, S.R. Yeh, Am. Chem. Soc. 75, 5381 (2003)

    Google Scholar 

  • J. Liu, M. Enzelberger, S.R. Quake, Electrophoresis 23, 1531 (2002)

    Article  Google Scholar 

  • R. Miyake, K. Tsuzuki, T. Takagi, K. Imai, in The 10th IEEE Workshop on MEMS, 1997, p. 102

  • M.S. Munson, P. Yager, Anal. Chim. Acta 507, 63 (2004)

    Article  Google Scholar 

  • N.T. Nguyen, Z. Wu, J. Micromechanics Microengineering 15, 1 (2005)

    Article  Google Scholar 

  • S.J. Park, J.K. Kim, J. Park, S. Chung, C. Chung, J.K. Chang, J. Micromechanics Microengineering 14, 6 (2004)

    Article  Google Scholar 

  • S.K. Sia, G.M. Whitesides, Electrophoresis 24, 3563 (2003)

    Article  Google Scholar 

  • H. Song, M.R. Bringer, J.D. Tice, C.J. Gerdts, R.F. Ismagilov, Appl. Phys. Lett. 83, 4664 (2003)

    Article  Google Scholar 

  • A.D. Stroock, S.K.W. Dertinger, A. Ajdari, I. Mezic, H.A. Stone, G.M. Whitesides, Science 295, 647 (2002)

    Article  Google Scholar 

  • H. Suzuki, C.M. Ho, Microelectromechanical Syst. 13, 779 (2004)

    Article  Google Scholar 

  • H. Tsai, L. Lin, Sens. Actuators, A 97, 665 (2002)

    Article  Google Scholar 

  • M.A. Unger, H.P. Chou, T. Thorsen, A. Scherer, S.R. Quake, Science 288, 113 (2000)

    Article  Google Scholar 

  • H.Z. Wang, P. Iovenitti, E. Harvey, S. Masood, Smart Mater. Struct. 11, 662 (2002)

    Article  Google Scholar 

  • C.H. Wang, G.B. Lee, Biosens. Bioelectron. 21, 419 (2005)

    Article  Google Scholar 

  • A. Yamazaki, M. Sendoh, K. Ishiyama, K.I. Arai, T. Hayase, IEEE Trans. Magn. 39, 3289 (2003a)

    Article  Google Scholar 

  • A. Yamazaki, M. Sendoh, K. Ishiyama, T. Hayase, K.I. Arai, Sens. Actuators, A 105, 103 (2003b)

    Article  Google Scholar 

  • Z. Yang, H. Goto, M. Matsumoto, R. Maeda, Electrophoresis 21, 116 (2000)

    Article  Google Scholar 

  • S. Zeng, C.H. Chen, J.C. Mikkelson Jr., J.G. Santiago, Sens. Actuators, B 79, 107 (2001)

    Article  Google Scholar 

  • B. Ziaie, A. Baldi, M. Lei, Y. Gu, R.A. Siegel, Adv. Drug Deliv. Rev. 56, 145 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support provided to this study by the National Science Council, Taiwan (NSC 93-2323-B-006-010), the MOE Program for Promoting Academic Excellence of Universities (EX-91-E-FA09-5-4). Also, the access provided to major fabrication equipment at the Center for Micro/Nano Technology Research, National Cheng Kung University is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gwo-Bin Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tseng, HY., Wang, CH., Lin, WY. et al. Membrane-activated microfluidic rotary devices for pumping and mixing. Biomed Microdevices 9, 545–554 (2007). https://doi.org/10.1007/s10544-007-9062-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-007-9062-6

Keywords

Navigation