Abstract
Cell migration, which involves complicated coordination of cytoskeleton elements and regulatory molecules, plays a central role in a large variety of biological processes from development, immune response to tissue regeneration. However, conventional methods to study in vitro cell migration are often limited to stimulating a cell along a single direction or at a single location. This restriction prevents a deeper understanding of the fundamental mechanisms that control the spatio-temporal dynamics of cytoskeleton. Here we report a novel microfabricated platform that enables a multi-directional stimulation to a cell using topographical cues. In this device, cells were seeded on a grid-patterned topographically structured surface composed of 2 μm wide and 2 μm high straight ridges. Because the size of a unit grid was smaller than a single cell, each cell was simultaneously experiencing contact guidance leading to different directions. The device showed that healthy cells preferred to align and migrate in the direction of the longer side of the grid. But cells with impaired intracelluar tension force generation exhibited multiple uncoordinated cell protrusions along guiding ridges in all directions. Our results demonstrate the importance of actomyosin network in long-range communication and regulation of local actin polymerization activities. This platform will find wide applications in investigations of signal transduction and regulation process in cell migration.
This is a preview of subscription content, access via your institution.








References
A.R. Bausch, W. Moller, E. Sackmann, Biophys. J. 76(1), 573 (1999)
D. Choquet, D.P. Felsenfeld, M.P. Sheetz, Cell 88(1), 39 (1997)
P. Clark, P. Connolly, A.S.G. Curtis, et al., J. Cell Sci. 99, 73 (1991)
T.A. Desai, D. Hansford, M. Ferrari, J. Membr. Sci. 159(1–2), 221 (1999)
R.G. Flemming, C.J. Murphy, G.A. Abrams, et al., Biomaterials 20(6), 573 (1999)
M.T. Frey, I.Y. Tsai, T.P. Russell, et al., Biophys. J. 90(10), 3774 (2006)
S.L. Gupton, C.M. Waterman-Storer, Cell 125(7), 1361 (2006)
M. Ikebe, D.J. Hartshorne, J. Biol. Chem. 260(18), 27 (1985)
A.B. Jaffe, A. Hall, Rho GTPase: biochemistry and biology. Annu. Rev. Cell Dev. Biol. 21, 247–269 (2005)
C. Janetopoulos, L. Ma, P.N. Devreotes, et al., Proc. Natl. Acad. Sci. USA 101(24), 8951 (2004)
N.L. Jeon, H. Baskaran, S.K.W. Dertinger, et al., Nat. Biotechnol. 20(8), 826 (2002)
K. Katoh, Y. Kano, M. Amano, et al., J. Cell Biol. 153(3), 569 (2001)
A. Katsumi, J. Milanini, W.B. Kiosses, et al., J. Cell Biol. 158(1), 153 (2002)
K. Kimura, M. Ito, M. Amano, et al., Science 273(5272), 245 (1996)
J. Kolega, Mol. Biol. Cell 14(12), 4745 (2003)
S. Komatsu, M. Ikebe, J. Cell Biol. 165(2), 243 (2004)
V.S. Kraynov, C. Chamberlain, G.M. Bokoch, et al., Science 290(5490), 333 (2000)
Y. Kureishi, S. Kobayashi, M. Amano, et al., J. Biol. Chem. 272(19), 12257 (1997)
D.A. Lauffenburger, A.F. Horwitz, Cell 84(3), 359 (1996)
M. Mrksich, C.S. Chen, Y.N. Xia, et al., Proc. Natl. Acad. Sci. USA 93(20), 10775 (1996)
C.A. Parent, P.N. Devreotes, Science 284(5415), 765 (1999)
O. Pertz, L. Hodgson, R.L. Klemke, et al., Nature 440(7087), 1069 (2006)
P.D. Ponath, J. Wang, H. Heath, Methods Mol. Biol. 138, 113–120 (2000)
M. Prass, K. Jacobson, A. Mogilner, et al., J. Cell Biol. 174(6), 767 (2006)
A.J. Ridley, M.A. Schwartz, K. Burridge, et al., Science 302(5651), 1704 (2003)
D. Rogers, Crawling Neutrophil Chasing a Bacterium, http://www.biochemweb.org/fenteany/research/cell_migration/neutrophil.html (1950s)
M.A. Schwartz, A.R. Horwitz, Cell 125(7), 1223 (2006)
A.F. Straight, A. Cheung, J. Limouze, et al., Science 299(5613), 1743 (2003)
A.I. Teixeira, G.A. McKie, J.D. Foley, et al., Biomaterials 27(21), 3945 (2006)
V. Vogel, M. Sheetz, Nat. Rev. Mol. Cell Biol. 7(4), 265 (2006)
Y.X. Wang, E.L. Botvinick, Y.H. Zhao, et al., Nature 434(7036), 1040 (2005)
P. Weiss, J. Exp. Zool. 100(3), 353 (1945)
G.M. Whitesides, E. Ostuni, S. Takayama, et al., Annu. Rev. Biomed. Eng. 3, 335 (2001)
J.S. Xu, F. Wang, A. Van Keymeulen, et al., Cell 114(2), 201 (2003)
D. Zicha, G. Dunn, G. Jones, Methods Mol. Biol. 75, 449–457 (1997)
Acknowledgements
We thank A. Fisher at Berkeley Tissue Culture Center, S. Ruzin and D. Schichness at Berkeley Biological Imaging Facility, D. Drubin’s lab, and J. Chu for help in cell culture and imaging. We thank JS. Xu and S. Wang for comments on the manuscript. This work was supported by the Center for Cell Mimetic Space Exploration and NSF Nanoscale Science and Engineering Center. J. M. is supported by NSF-IGERT fellowship.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Mai, J., Sun, C., Li, S. et al. A microfabricated platform probing cytoskeleton dynamics using multidirectional topographical cues. Biomed Microdevices 9, 523–531 (2007). https://doi.org/10.1007/s10544-007-9060-8
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10544-007-9060-8
Keywords
- Cell migration
- Cytoskeleton
- Surface topology
- Microtexture
- Smooth muscle cell
- Cell-substrate interaction
- Contact guidance
- Single cell manipulation