Surface acoustic wave concentration of particle and bioparticle suspensions

Abstract

A rapid particle concentration method in a sessile droplet has been developed using asymmetric surface acoustic wave (SAW) propagation on a substrate upon which the droplet is placed. Due to the asymmetry in the SAW propagation, azimuthal bulk liquid recirculation (acoustic streaming) is generated. Once the local particle concentration is sufficiently high within a particular streamline of the acoustic streaming convective flow, shear-induced migration gives rise to an inward radial force that concentrates the particles at the centre of the droplet. In this paper, a SAW device consists of a 0.75-mm thick, 127.68° YX-axis-rotated cut, X-propagating LiNbO3 for a substrate and an interdigital transducer electrode (IDT) with 25 straight finger pairs in a simple repeating pattern, 12 mm aperture, and a wavelength of λ = 440 μm was patterned on the substrate. The IDT was then driven with a sinusoidal signal at the resonance frequency f 0 of 8.611 MHz. To investigate the effect of particle type and size on the concentration process, three types of particles were used in this study, including fluorescent particles (1 μm), polystyrene microspheres (3, 6, 20, 45 μm), and living yeast cells (10–20 μm). Different RF powers were applied ranging from 120 to 510 mW. The concentration processes occurs within 2 to 20 s, depending on the particle size, type and input radio frequency (RF) power, much faster than currently available particle concentration mechanisms due to the large convective velocities achieved using the SAW device. Moreover, this concentration method is efficient, concentrating the particles into an aggregate one-tenth the size of the original droplet. Most importantly, bioparticles can also be concentrated by this method; we have verified that yeast cells are not lysed by the SAW radiation during concentration. By using the rapid concentration process described in this work, the breadth of applications and measurement sensitivity of SAW biosensor systems should be greatly enhanced.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. F. Ahimou, A. Touhami, Y.F. Dufrene, Yeast 20, 25 (2003)

    Article  Google Scholar 

  2. P.A. Belter, E.L. Cussler, W.-S. Hu, Bioseparation: Downstream Processing for Biotechnology (Wiley, New York, 1998)

    Google Scholar 

  3. J. Bennès, S. Alzuaga, P. Chabé, G. Morain, F. Chérioux, J.-F. Manceau, F. Bastien, Action of low frequency vibration on liquid droplets and particles. Ultrasonics 44, e497–e502 (Supplement 1, 22 December 2006)

    Article  Google Scholar 

  4. F.L. Dickert, P. Lieberzeit, O. Hayden, Anal. Bioanal. Chem. 377, 540 (2003)

    Article  Google Scholar 

  5. A. Guttenberg, A. Rathgeber, S. Keller, J.O. Radler, A. Wixforth, M. Kostur, M. Schindler, P. Talkner, Phys. Rev., E 70, 056311 (2004)

    Article  Google Scholar 

  6. J.J. Hawkes, M.J. Long, W.T. Coakley, M.B. McDonnell, Biosens. Bioelectron. 19, 1021 (2004)

    Article  Google Scholar 

  7. C.-M. Ho, in Proc. IEEE MEMS’01 (Interlaken, Switzerland, 2001), p. 375

    Google Scholar 

  8. E. Howe, G. Harding, Biosens. Bioelectron. 15, 641 (2000)

    Article  Google Scholar 

  9. D. Ivnitski, I. Abdel-Hamid, P. Atanasov, E. Wilkins, Biosens. Bioelectron. 14, 599 (1999)

    Article  Google Scholar 

  10. B. Koenig, M. Gratzel, Anal. Lett. 8, 1567 (1993)

    Google Scholar 

  11. A. Kundt, O. Lehmann, Ann. Phys. 153, 1 (1874)

    Google Scholar 

  12. A.H. Meng, A.W. Wang, R.M. White, in Proc. Transducers’99 Conference (Sendai, Japan, 1999), p. 876

  13. J.C. Rife, M.I. Bell, J.S. Horwitz, M.N. Kabler, R.C.Y. Auyeung, W.J. Kim, Sens. Actuators 86, 135 (2000)

    Article  Google Scholar 

  14. K.A. Smart, K.M. Chambers, I. Lambert, C. Jenkins, J. Am. Soc. Brew. Chem. 57, 18 (1999)

    Google Scholar 

  15. K. Sritharan, C.J. Strobl, M.F. Schneider, A. Wixforth, Appl. Phys. Lett. 88, 054102 (2006)

    Article  Google Scholar 

  16. A.A. Suleiman, G.G. Guilbault, Analyst 119, 2279 (1994)

    Article  Google Scholar 

  17. C.J.M. van Rijn, W. Nijdam, S. Kuiper, G.J. Veldhuis, H. van Wolferen, M.J. Elwenspoek, J. Micromechanics Microengineering 9, 170 (1999)

    Article  Google Scholar 

  18. G.M. Walker, D.J. Beebe, Lab Chip 2, 57–61 (2002)

    Article  Google Scholar 

  19. R.M. White, F.W. Voltmer, Appl. Phys. Lett. 7, 314 (1965)

    Article  Google Scholar 

  20. A. Wixforth, Superlattices Microstruct. 33, 389 (2004)

    Article  Google Scholar 

  21. A. Wixforth, C. Strobl, Ch. Gauer, A. Toegl, J. Scriba, A.V. Guttenberg, Anal. Bioanal. Chem. 379, 982 (2004)

    Article  Google Scholar 

  22. P.K. Wong, C. Chen, T. Wang, C.-M. Ho, Anal. Chem. 76, 6908 (2004)

    Article  Google Scholar 

  23. K. Yasuda, S. Umemura, K. Takeda, J. Acoust. Soc. Am. 99, 1965 (1996)

    Article  Google Scholar 

  24. L.Y. Yeo, D. Hou, S. Maheshswari, H.-C. Chang, Appl. Phys. Lett. 88, 233512 (2006a)

    Article  Google Scholar 

  25. L.Y. Yeo, J.R. Friend, D.R. Arifin, Appl. Phys. Lett. 89, 103516 (2006b)

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr. Christopher Ticknor for imaging the acoustic streaming recirculation in Fig. 1(c). The authors would also like to thank Dr. Christopher Langendorf for providing the yeast cells.

Author information

Affiliations

Authors

Corresponding author

Correspondence to James R. Friend.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Li, H., Friend, J.R. & Yeo, L.Y. Surface acoustic wave concentration of particle and bioparticle suspensions. Biomed Microdevices 9, 647–656 (2007). https://doi.org/10.1007/s10544-007-9058-2

Download citation

Keywords

  • Surface acoustic wave
  • Particle concentration
  • Biosensor