Skip to main content
Log in

Analysis of pH and electrically controlled swelling of hydrogel-based micro-sensors/actuators

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

In this paper, we carry out the theoretical electro-chemo-mechanical investigation into water swollen ionic polymer gels under the simultaneous influence of electrical and chemical stimuli. In addition to these hydrogels being deployed as active sensing/actuating elements in MEMS/BioMEMS devices, this work can also serve as the basis of illustrating synthetic analogs of physiological muscles with possible applications in orthotics, prosthetics, and as artificial muscles. An electro-chemo-mechanical model or Multi-Effect-Coupling of pH Stimulus (MECpH) model, which was developed earlier by the present authors, is significantly extended to handle nonlinear deformation and implemented numerically to simulate the deformation characteristics of the pH-stimulus responsive hydrogel under the application of an externally applied voltage in different buffered pH solutions. The nonlinear deformation theory provides more accurate results especially when the deformations are large. The hydrogel is observed to experience swelling and bending when pH and external electric field stimuli coexist. The mode and degree of deformation are found to be highly dependent on changes of environmental pH, external electrical potential and bathing ionic strength. As an anionic hydrogel is considered in the simulation, it shows larger changes in deformation characteristic in basic than in acidic solutions. More importantly, the average curvatures of the swollen hydrogel are found to be a linear function with the applied electric potential, making the hydrogel an ideal actuator. However, we also note a significant decrease in the swelling equilibrium degree as the ionic strength becomes concentrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • D.J. Beebe, J.S. Moore, J.M. Bauer, Q. Yu, R.H. Liu, C. Devadoss, B.H. Jo, Nature 404, 588 (2000)

    Article  Google Scholar 

  • T. Belytschko, W.K. Liu, B. Moran, Nonlinear Finite Elements for Continua and Structures (Wiley, New York, 2000)

    MATH  Google Scholar 

  • J.O.M. Bockris, K.N. Reddy-Amulya, Modern Electrochemistry: Ionics, 2nd ed. (Plenum, New York, 1998)

    Google Scholar 

  • D. Brock, W. Lee, D. Segalman, W. Witkowski, J. Intell. Mater. Syst. Struct. 5, 764 (1994)

    Article  Google Scholar 

  • K. Cooper, E. Jakobsson, P. Wolynes, Prog. Biophys. Mol. Biol. 46, 51 (1985)

    Article  Google Scholar 

  • P. Dario, D. De Rossi, IEEE Spectrum 22, 46 (1985)

    Google Scholar 

  • S.K. De, N.R. Aluru, B. Johnson, W.C. Crone, D.J. Beebe, J. Moore, J. Microelectromech. Syst. 11, 544 (2002)

    Article  Google Scholar 

  • D. De Rossi, P. Parrini, P. Chiarelli, G. Buzzigoli, Trans. – Am. Soc. Artif. Intern. Organs XXXI, 60 (1985)

    Google Scholar 

  • D. De Rossi, P. Chiarelli, G. Buzzigoli, G. Domenici, L. Lazzeri, Trans. – Am. Soc. Artif. Intern. Organs XXXII, 157 (1986)

    Google Scholar 

  • D. De Rossi, A. Nannini, G. Domenici, J. Mol. Electron. 3, 173 (1987)

    Google Scholar 

  • D. De Rossi, A. Nannini, G. Domenici, IEEE Trans. Biomed. Eng. 35, 83 (1988)

    Article  Google Scholar 

  • M. Doi, M. Matsumoto, Y. Hirose, Macromolecules 25, 5504 (1992)

    Article  Google Scholar 

  • G. Domenici, D. De Rossi, A. Bacci, S. Bennati, IEEE Trans. Electr. Insul. 24, 1077 (1989)

    Article  Google Scholar 

  • P.J. Flory, Principle of Polymer Chemistry (Cornell University Press, New York, 1962)

    Google Scholar 

  • A. Fragala, J. Enos, A. LaConti, J. Boyack, Electrochim. Acta 17, 1507 (1972)

    Article  Google Scholar 

  • D.E. Goldman, in Biophysics and Physiology of Excitable Membranes, ed. by W.J. Adelman Jr. (Van Nostrand Reinhold, New York, 1971), p. 337

    Google Scholar 

  • S.H. Gehrke, E.L. Cussler, Chem. Eng. Sci. 44, 559 (1989)

    Article  Google Scholar 

  • P.E. Grimshaw, Electrical Control of Solute Transport Across Polyelectrolyte Membranes (Ph.D. Thesis, Massachusetts Institute of Technology, MA, 1989)

  • P.E. Grimshaw, J.H. Nussbaum, A.J. Grodzinsky, M.L. Yarmush, J. Chem. Phys. 93, 4462 (1990)

    Article  Google Scholar 

  • A.J. Grodzinsky, Electromechanics of Deformable Polyelectrolyte Membranes (Sc.D Thesis, Massachusetts Institute of Technology, MA, 1974)

  • A.J. Grodzinsky, J.R. Melcher, IEEE Trans. Biomed. Eng. 23, 421 (1976)

    Article  Google Scholar 

  • A.J. Grodzinsky, N.A. Shoenfeld, Polymer 18, 435 (1977)

    Article  Google Scholar 

  • R.P. Hamlen, C.E. Kent, S.N. Shafer, Nature 206, 1149 (1965)

    Article  Google Scholar 

  • G. A. Holzapfel, Nonlinear Solids Mechanics: A Continuum Approach for Engineering (Wiley, England, 2000)

    Google Scholar 

  • A. Katchalsky, Experientia 5, 319 (1949)

    Article  Google Scholar 

  • H. Li, T.Y. Ng, J.Q. Cheng, K.Y. Lam, Computat. Mech. 33, 30 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  • H. Li, Y.K. Yew, K.Y. Lam, T.Y. Ng, Colloids Surf., A Physicochem. Eng. Asp. 249, 149 (2004)

    Article  Google Scholar 

  • H. Li, T.Y. Ng, Y.K. Yew, and K.Y. Lam, Biomacromolecules 6, 109 (2005a)

    Article  Google Scholar 

  • H. Li, Y.K. Yew, K.Y. Lam, J. Electroanal. Chem. 580, 161 (2005b)

    Article  Google Scholar 

  • A.D. MacGillivray, J. Chem. Phys. 48, 2903 (1968)

    Article  Google Scholar 

  • A.D. MacGillivray, D. Hare, J. Theor. Biol. 25, 113 (1969)

    Article  Google Scholar 

  • L.E. Malvern, Introduction to the Mechanics of A Continuum Medium (Prentice-Hall, Englewood Cliffs, NJ, 1969)

    Google Scholar 

  • E.A. Moschou, S.F. Peteu, L.G. Bachas, M.J. Madou, S. Daunert, Chem. Mater. 16, 2499 (2004)

    Article  Google Scholar 

  • S. Nemat-Nasser, J.Y. Li, J. Appl. Phys. 87, 3321 (2000)

    Article  Google Scholar 

  • Y. Osada, M. Hasebe, Chem. Lett. 1285 (1985)

  • Y. Osada, S.B. Ross-Murphy, Sci. Am. 82 (May 1993)

  • Y. Osada, R. Kishi, M. Hasebe, J. Polym. Sci., C, Polym. Lett. 25, 481 (1987)

    Article  Google Scholar 

  • Y. Osada, J.P. Gong, K. Sawahata, J. Macromol. Sci., Chem. A28, 1189 (1991)

    Google Scholar 

  • J. Rubin, Water Resour. Res. 19 1231 (1983)

    Google Scholar 

  • D.J. Segalman, W.R. Witkowski, D. Adolf, M. Shahinpoor, Smart Mater. Struc. 1, 95 (1992)

    Article  Google Scholar 

  • M. Shahinpoor, Y. Bar-Cohen, J.O. Simpson, J. Smith, Smart Mater. Struc. 7, R15 (1998)

    Article  Google Scholar 

  • T. Shiga, T. Kurauchi, J. Appl. Polym. Sci. 39, 2305 (1990)

    Article  Google Scholar 

  • T. Shiga, Y. Hirose, A. Okada, T. Kurauchi, J. Appl. Polym. Sci. 44, 249 (1992)

    Article  Google Scholar 

  • N.A. Shoenfeld, A.J. Grodzinsky, Biopolymers 19, 241 (1980)

    Article  Google Scholar 

  • T. Teorell, Prog. Biophys. Biophys. Chem. 3, 305 (1953)

    Google Scholar 

  • E. Yeager, J.O’M. Bockris, B.E. Conway, S. Sarangapani , Comprehensive Treatise of Electrochemistry, vol. 6. Electrodics: Transport (Plenum, New York, 1983)

    Google Scholar 

  • X. Zhou, Y.C. Hon, S. Sun, A.F.T. Mak, Smart Mater. Struc. 11, 459 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Y. Ng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yew, Y.K., Ng, T.Y., Li, H. et al. Analysis of pH and electrically controlled swelling of hydrogel-based micro-sensors/actuators. Biomed Microdevices 9, 487–499 (2007). https://doi.org/10.1007/s10544-007-9056-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-007-9056-4

Keywords

Navigation