Skip to main content
Log in

Polymeric nanofiber web-based artificial renal microfluidic chip

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

In this paper, we present a new method for the creation of a smaller dialyzer and do so by incorporating polymeric nanofiber web, which is known to have good filtration efficiency for broad particle sizes, into a poly (dimethylsiloxane)-based microplatform. We have developed a process that makes possible the efficient production of polyethersulfone and polyurethane nanofiber web and that, itself, incorporates an electrospinning method. We have combined the nanofiber web with the PDMS-based microfluidic platform to create a chip-based portable hemodialysis system. With the dialyzing chip, we evaluated the filtration capability of molecules in broad ranges of sizes and compared the filtration capability of nanofiber membranes with that of PES and polyvinylidene fluoride porous membranes (sheet type): we discovered that the nanofiber membranes have better filtration performance than the other membranes. Blood cells were not mechanically affected during their filtration and their transportation through the chip. In conclusion, we have demonstrated the feasibility of chip-based hemodialysis, and we expect that our method suggested in this paper will be applied to the development of small light-weight dialyzers for the realization of portable hemodialysis systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • C.H. Ahn, J.W. Choi, G. Beaucage, J.H. Nevin, J.B. Lee, A. Puntambekar, and J.Y. Lee, Proc. of IEEE 92, 154 (2004).

    Article  Google Scholar 

  • K.J. Baik, J.Y. Kim, H.K. Lee, and S.C. Kim, J. Appl. Polym. Sci. 74, 2113 (1999).

    Article  Google Scholar 

  • R.H. Barth, Replacement of Renal Function by Dialysis 4th ed. (Kluwer Academic Publishers, 1996), p. 418.

  • D.J. Beebe, G.A. Mensing, and G.M. Walker, Biomed. Eng. 4, 261 (2002).

    Google Scholar 

  • J.W. Choi, K.W. Oh, J.H. Thomas, W.R. Heineman, H.B. Halsall, J.H. Nevin, A.J. Helmicki, H.T. Henderson, and C.H. Ahn, Lab. Chip. 2, 27 (2002).

    Article  Google Scholar 

  • J. Gardeniers and A. Van Den Berg, Anal. Bioanal. Chem. 378, 1700 (2004).

    Article  Google Scholar 

  • T.H. Grafe and K.M. Graham, In Proceedings of 5th International Conference (Stuttgart, 2003).

  • B.L. Hogan, S.M. Lunte, J.F. Stobaugh, and C.E. Lunte, Anal. Chem. 66, 596 (1994).

    Article  Google Scholar 

  • J.W. Hong, V. Studer, G. Hang, W.F. Anderson, and S.R. Quake, Nat. Biotech. 22, 435 (2004).

    Article  Google Scholar 

  • W.H. Hőrl, K.M. Koch, R.M. Lindsay, C. Ronco, and J.F. Winchester, Replacement of Renal Function by Dialysis 5th ed. (Kluwer Academic Publishers, 2004), Sec. II, p. 313.

  • P.J. Hung, P.J. Lee, P. Sabounchi, R. Lin, and L.P. Lee, Biotechnol. Bioeng. 89, 1 (2005).

    Article  Google Scholar 

  • D. Janasek, J. Franzke, and A. Manz, Nature 442, 374 (2006).

    Article  Google Scholar 

  • M.K. Ng. Jessamine, I. Giltin, A.D. Stroock, and G.M. Whitesides, Electrophoresis 23, 3461 (2002).

  • R. Kaazempur-Mofrad, J.P. Vacanti, N.J. Krebs, and J.T. Borenstein, In Proceedings of the Solid-State Sensor, Actuator and Microsystems Workshop (South Carolina, 2004), p. 67.

  • D.S. Kim, S.H. Lee, C.H. Ahn, J.Y. Lee, and T.H. Kwon, Lab. Chip. 6, 784 (2006).

    Google Scholar 

  • B. Krause, M. Storr, T. Ertl, R. Buck, H. Hildwein, R. Deppisch, and H. Göhl, Chem. Ing. Tech. 11, 1725 (2003).

    Article  Google Scholar 

  • M. Külz, B. Nederlof, and H. Schneider, Nephrol. Dial. Transplant. 17, 1475 (2002).

    Article  Google Scholar 

  • S.H. Lee, W.J. Jeong, and D.J. Beebe, Lab. Chip. 3, 164 (2003).

    Article  Google Scholar 

  • K.H. Lee, H.Y. Kim, Y.J. Ryu, K.W. Kim, and S.W. Choi, J. Polym. Sci. Part B: Polym. Phys. 41, 1256 (2003).

    Article  Google Scholar 

  • J.M.K. Ng, I. Gitlin, A.D. Stroock, and G.M. Whitesides, Electrophoresis 23, 3461 (2002).

    Article  Google Scholar 

  • A.R. Nissenson, C. Ronco, G. Pergamit, M. Edelstein, and R. Watts, Blood Purif. 23, 269 (2005).

    Article  Google Scholar 

  • J.Y. Park and S.H. Lee, J. Micromech. Microeng. 15, 1015 (2005).

    Article  Google Scholar 

  • M. Pulat and A. Akdoğan, J. Appl. Polym. Sci. 85, 193 (2002).

    Article  Google Scholar 

  • C. Ronco, A. Brendolan, A. Lupi, G. Metry, and N.W. Levin, Kidney Int. 58, 809 (2000).

    Article  Google Scholar 

  • M.H. Rosner, South. Med. J. 98, 785 (2005).

    Article  Google Scholar 

  • S. Song, A.K. Singh, T.J. Shepodd, and B.J. Kirby, Anal. Chem. 76, 2367 (2004).

    Article  Google Scholar 

  • A.J. Tüdos, G.A.J. Besselink, and R.B.M. Schasfoort, Lab. Chip. 1, 83 (2002).

    Article  Google Scholar 

  • G.M. Whitesides, Nature 442, 368 (2006).

    Article  Google Scholar 

  • P. Yager, T. Edwards, E. Fu, K. Helton, K. Nelson, M.R. Tam, and B.H. Weigl, Nature 442, 412 (2006).

    Article  Google Scholar 

  • M.C. Yang and W.C. Lin, J. Polym. Res. 9, 61 (2002).

    Article  Google Scholar 

  • S.H. Ye, J. Watanabe, M. Takai, Y. Iwasaki, and K. Ishihara, Biomaterials 26, 5032 (2005).

    Article  Google Scholar 

  • J.D. Zahn, A.A. Deshmukh, A.P. Papavasiliou, A.P. Pisano, and D. Liepmann, In Proceedings of 2001 ASME International Mechanical Engineering Congress and Exposition (New York, 2001).

  • Y. Zhang, H. Ouyang, C.T. Lim, S. Ramakrishna, and Z.M. Huang, J. Biomed. Mater. Res. B Appl. Biomater. 72, 156 (2005).

    Article  Google Scholar 

Download references

Acknowledgment

This study was supported by two grants of the Korea Health 21 R&D Project, Ministry of Health &; Welfare, Republic of Korea. (0405-ER01–0304-0001) and (02-PJ3-PG6-EV09–0001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to B. G. Min or S. H. Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, K.H., Kim, D.J., Min, B.G. et al. Polymeric nanofiber web-based artificial renal microfluidic chip. Biomed Microdevices 9, 435–442 (2007). https://doi.org/10.1007/s10544-007-9047-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-007-9047-5

Keywords

Navigation