Skip to main content
Log in

Structure-property relationships in the optimization of polysilicon thin films for electrical recording/stimulation of single neurons

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

We had earlier demonstrated the use of polysilicon microelectrodes for recording electrical activity from single neurons in vivo. Good machinability and compatibility with CMOS processing further make polysilicon an attractive interface material between biological environments on one hand and MEMS technology and digital circuits on the other hand. In this study, we focus on optimizing the polysilicon thin films for (a) electrical recording and (b) stimulation of single neurons by minimizing its electrochemical impedance spectra and maximizing its charge storage/injection capacity respectively. The structure-property relationships in ion-implanted (phosphorus) LPCVD polysilicon thin films under different annealing and doping conditions were carefully assessed during this optimization process. A 2D model of the polysilicon thin film consisting of 4 grains and 3 grain boundaries was constructed and the effect of grain size and grain boundaries on dc resistivity was simulated using device simulator ATLAS. Optimal processing conditions and doping concentrations resulted in a 10-fold decrease in electrochemical impedance from 1.1 kΩ to 0.1 kΩ at 1 kHz (area of polysilicon interface = 4.8 mm2). Subsequent characterizations showed that evolution of secondary grains within the polysilicon thin films at optimal doping and annealing conditions (1021/cm3 of phosphorus and annealed at 1200°C) was responsible for decreasing the impedance. Cyclic voltammetry studies demonstrated that charge storage properties of low doped (1015/cm3) thin films was 111.4 μC/cm2 in phosphate buffered saline which compares well with platinum wires (∼50 μC/cm2) and the double-layered capacitance (C dl ) could be sustained between –1 to 1 V before breakdown and hydrolysis. We conclude that polysilicon can be optimized for recording and stimulating single neurons and can be a valuable interface material between neurons and CMOS or MEMS devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • W.F. Agnew and D.B. MCreery, Neural Prostheses: Fundamental Studies. (Prentice Hall, New Jersey, 1990).

    Google Scholar 

  • A. Bragin, J. Hetke, C.L. Wilson, D.J. Anderson, L, Engel, and G. Buzsaki, J. Neurosci. Meth. 98, 77 (2000).

    Article  Google Scholar 

  • V. Bucher, M. Graf, M. Stelzle, and W. Misch, Biosens Bioelectron 14, 639 (1999).

    Article  Google Scholar 

  • K.C. Cheung, Y.K. Choi, T. Kubow, and L.P. Lee, MRS Spring Meeting, CA (2002).

  • S.F. Cogan, P.R. Troyk, J. Ehrlich, and T.D. Plante, IEEE T Bio-Med. Eng. 52(9), 1612 (2005).

    Article  Google Scholar 

  • R.T. DeHoff and F.N. Rhines, Quantitative Microscopy (Mc-Graw-Hill, New York, 1968).

    Google Scholar 

  • R. Edrei, E.N. Shauly, and A. Hoffman, J. Vac. Sci. Technol. B. 18(1), 41 (2000).

    Article  Google Scholar 

  • G.W. Gross, W.Y. Wen, and J.Y. Lin, J. Neurosci. Meth. 15, 243 (1985).

    Article  Google Scholar 

  • J.M. Henderson, M. Pell, D.J. O’Sullivan, E.A. McCusker, V.S.C. Fung, P. Hedges, and G.M. Halliday, Movment. Disord. 17, 133 (2002).

    Article  Google Scholar 

  • T.I. Kamins, J. Electrochem, Soc.: Solid-State. Science. and Technology. 127(3), 686 (1980).

    Google Scholar 

  • D.T. Kewley, M.D. Hills, D.A. Borkholder, I.E. Opris, N.L. Maluf, C.W. Storment, J.M. Bower, and G.T. Kovacs, Sensor. Actuat. A-Phys. 58, 27035 (1997).

    Google Scholar 

  • H.-J. Kim, and C.V. Thompson, J. Appl. Phys. 67(2), 757 (1990).

    Article  Google Scholar 

  • M. Kimura, I. Satoshi, T. Shimoda, and T. Sameshima, Jpn. J. Appl. Phys. 40(1), 49 (2001).

    Article  Google Scholar 

  • Y. Laghla, E. Scheid, H. Vergnes, and J.P. Couderc, Sol. Energ. Mat. Sol. C 48, 303 (1997).

    Article  Google Scholar 

  • I.S. Lee, C.N. Whang, K. Choi, M.S. Choo, and Y.H. Lee, Biomaterials 23(11), 2375 (2002).

    Article  Google Scholar 

  • R. de Levie, Electrochim Acta 9, 1231 (1964).

    Article  Google Scholar 

  • K.A. Ludwig, J.D. Uram, J.Y. Yang, D.C. Martin, and D.R. Kipke, J. Neural. Eng. 3(1), 59 (2006).

    Article  Google Scholar 

  • M.M. Mandurah, K.C. Saraswat, and T.I. Kamins, IEEE T Electron. Dev. ED-28(10), 1171 (1981).

    Google Scholar 

  • E.M. Maynard, C.T. Nordhausen, and R.A. Norman, Electroen. Clin. Neuro. 102, 228 (1997).

    Article  Google Scholar 

  • E.T. McAdams, Surface Topography 2, 107 (1989).

    Google Scholar 

  • E.T. McAdams, A. Lackermeier, J.A. McLaughlin, and D. Macken, Biosens Bioelectron 10, 67 (1995).

    Article  Google Scholar 

  • D.B. McCreery, L.A. Bullara, and W.F. Agnew, Exp. Neurol. 92, 147 (1986).

    Article  Google Scholar 

  • D.B. McCreery, A. Lossinsky, V. Pikov, and L. Xindong, IEEE T Bio-Med. Eng. 53(4), 726 (2006).

    Article  Google Scholar 

  • J. Muthuswamy, M. Okandan, A. Gilletti, M.S. Baker, and T. Jain, IEEE T Bio-Med. Eng. 52(8), 1470 (2005a).

    Article  Google Scholar 

  • J. Muthuswamy, M. Okandan, and N. Jackson, J. Neurosci. Meth. 142(1), 45 (2005b).

    Article  Google Scholar 

  • J. Muthuswamy, M. Okandan, T. Jain, and A. Gilletti, IEEE T Bio-Med. Eng. 52(10), 1748 (2005c).

    Article  Google Scholar 

  • N.G. Nakhodkin and T.V. Rodionova, J. Cryst. Growth. 171, 50 (1997).

    Article  Google Scholar 

  • J.L. Novak and B.C. Wheeler, J. Neurosci. Meth. 23, 149 (1988).

    Article  Google Scholar 

  • S.J Oh, J.K Song, S.K An, and S.J Kim, J. Mater. Sci. Lett. 22, 131 (2003).

    Article  Google Scholar 

  • S.J. Paik and D.D. Cho, J. Korean. Phys. Soc. 41(6), 1046 (2002).

    Google Scholar 

  • J. Pine, J. Neurosci. Meth. 2, 19 (1980).

    Article  Google Scholar 

  • R.H. Pudenz, W.F. Agnew, and L.A. Bullara, Brain. Behav. Evolut. 14, 102 (1977).

    Google Scholar 

  • M. Rizzone, M. Lanotte, B. Bergamasco, A. Tavella, E. Torre, G. Faccani, A. Melcarne, and L. Lopiano, J. Neurol. Neurosur. PS. 71, 215 (2001).

    Article  Google Scholar 

  • T.L. Rose and L.S. Robblee, IEEE T Bio-Med. Eng. 37(11), 1118 (1990).

    Article  Google Scholar 

  • P.J. Rousche, D.S. Pellinen, D.P. Pivin, J.C. Williams, R.J. Vetter, and D.R. Kipke, IEEE T Bio-Med. Eng. 48, 361 (2001).

    Article  Google Scholar 

  • W. Scheider, J. Phys. Chem. 79(2), 127 (1975).

    Article  Google Scholar 

  • J.D. Weiland and D.J. Anderson, IEEE T Bio-Med. Eng. 47(7), 911 (2000).

    Article  Google Scholar 

  • J. Wu, J. Suls, and W. Sansen, Electroanal 12(7), 538 (1999).

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Arizona Biomedical Research Commision and the NIH for supporting this research. We gratefully acknowledge the use of facilities within the Center for Solid State Science and the Center for Solid State Electronics Research at Arizona State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jit Muthuswamy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saha, R., Muthuswamy, J. Structure-property relationships in the optimization of polysilicon thin films for electrical recording/stimulation of single neurons. Biomed Microdevices 9, 345–360 (2007). https://doi.org/10.1007/s10544-006-9039-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-006-9039-x

Keywords

Navigation