Skip to main content
Log in

Quantitative PCR based expression analysis on a nanoliter scale using polymer nano-well chips

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

The analysis of gene expression is an essential element of functional genomics. Expression analysis is mainly based on DNA microarrays due to highly parallel readout and high throughput. Quantitative PCR (qPCR) based expression profiling is the gold standard for the precise monitoring of selected genes, and therefore used for validation of microarray data. Doing qPCR-based expression analysis in an array-like format can combine the higher sensitivity and accuracy of the qPCR methodology with a high data density at relatively low costs. This paper describes the development of an open-well based miniaturized platform for liquid PCR-based assays on the nanoliter scale using cost-effective polypropylene micro reactors (μPCR Chip). We show the quantification ability and reliability of qPCR in 200 nl with the μPCR chip down to 5 starting target molecules using TaqMan ® chemistry. An RNA expression analysis of four genes in mouse brain, liver and kidney tissues showed similar results in 200 nl as compared to standard 10 μl assays. The high sensitivity and quantification capability of the μPCR chip platform developed herein makes it a promising technology for performing high-throughput qPCR-based analysis in the nanoliter volume range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • W.M. Freeman, S.J. Walker, and K.E. Vrana, Biotechniques 26, 112 (1999).

    Google Scholar 

  • Y. Gitton, N. Dahmane, S. Baik, A. Ruiz i Altaba, L. Neidhardt, M. Scholze, B.G. Herrmann, P. Kahlem, A. Benkahla, S. Schrinner, R. Yildirimman, R. Herwig, H. Lehrach, and M.L. Yaspo, Nature 420, 586 (2002).

    Article  Google Scholar 

  • A. Gulliksen, L. Solli, F. Karlsen, H. Rogne, E. Hovig, T. Nordstrom, and R. Sirevag, Anal. Chem. 76, 9 (2004).

    Article  Google Scholar 

  • R. Higuchi, C. Fockler, G. Dollinger, and R. Watson, Biotechnology (NY) 11, 1026 (1993).

    Article  Google Scholar 

  • O. Kalinina, I. Lebedeva, J. Brown, and J. Silver, Nucleic. Acids Res. 25, 1999 (1997).

    Article  Google Scholar 

  • L.J. Kricka, P. Fortina, N.J. Panaro, P. Wilding, G. Alonso-Amigo, and H. Becker, Lab Chip 2, 1 (2002).

    Article  Google Scholar 

  • E.T. Lagally, I. Medintz, and R. A. Mathies, Anal Chem 73, 565 (2001).

    Article  Google Scholar 

  • E.S. Lander, Nat Genet 21, 3 (1999).

    Article  Google Scholar 

  • J.H. Leamon, W.L. Lee, K.R. Tartaro, J.R. Lanza, G.J. Sarkis, A.D. deWinter, J. Berka, and K.L. Lohman, Electrophoresis 24, 3769 (2003).

    Article  Google Scholar 

  • L.G. Lee, C.R. Connell, and W. Bloch, Nucleic. Acids. Res. 21, 3761 (1993).

    Article  Google Scholar 

  • E. Litborn, J. Roeraade, J. Chromatogr B. Biomed. Sci. Appl. 745, 137 (2000).

    Article  Google Scholar 

  • J. Liu, M. Enzelberger, and S. Quake, Electrophoresis 23, 1531 (2002).

    Article  Google Scholar 

  • K.J. Livak and T.D. Schmittgen, Methods 25, 402 (2001).

    Article  Google Scholar 

  • Y. Matsubara, K. Kerman, M. Kobayashi, S. Yamamura, Y. Morita, and E. Tamiya, Biosens Bioelectron 20, 1482 (2005).

    Article  Google Scholar 

  • T. Morrison, J. Hurley, J. Garcia, K. Yoder, A. Katz, D. Roberts, J. Cho, T. Kanigan, S.E. Ilyin, D. Horowitz, J.M. Dixon, and C.J. Brenan, Nucleic. Acids Res. 34, e123 (2006).

    Article  Google Scholar 

  • K. Mullis, F. Faloona, S. Scharf, R. Saiki, G. Horn, and H. Erlich, Cold Spring Harb. Symp. Quant. Biol. 51 (Pt 1), 263 (1986).

    Google Scholar 

  • H. Nagai, Y. Murakami, Y. Morita, K. Yokoyama, and E. Tamiya, Anal. Chem. 73, 1043 (2001).

    Article  Google Scholar 

  • R.G. Rutledge, C. Cote, Nucleic. Acids. Res. 31, e93 (2003).

    Article  Google Scholar 

  • R.K. Saiki, S. Scharf, F. Faloona, K.B. Mullis, G.T. Horn, H.A. Erlich, and N. Arnheim, Science 230, 1350 (1985).

    Article  Google Scholar 

  • T. Sano, C.L. Smith, and C.R. Cantor, Science 258, 120 (1992).

    Article  Google Scholar 

  • S. Sauer, B.M. Lange, J. Gobom, L. Nyarsik, H. Seitz, and H. Lehrach, Nat. Rev. Genet. 6, 465 (2005).

    Article  Google Scholar 

  • A. I. Su, M. P. Cooke, K. A. Ching, Y. Hakak, J. R. Walker, T. Wiltshire, A. P. Orth, R. G. Vega, L. M. Sapinoso, A. Moqrich, A. Patapoutian, G. M. Hampton, P. G. Schultz, and J. B. Hogenesch, Proc. Natl. Acad. Sci. USA 99, 4465 (2002).

    Article  Google Scholar 

  • S. Tyagi and F.R. Kramer, Nat. Biotechnol. 14, 303 (1996)

    Article  Google Scholar 

  • J. Vandesompele, K. De Preter, F. Pattyn, B. Poppe, N. Van Roy, A. De Paepe, and F. Speleman, Genome Biol 3, RESEARCH0034 (2002).

    Article  Google Scholar 

  • P. Wilding, M.A. Shoffner, and L.J. Kricka, Clin. Chem. 40, 1815 (1994).

    Google Scholar 

  • Q. Xiang, B. Xu, R. Fu, and D. Li, Biomed Microdevices 7, 273 (2005).

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Stephen Gelling and Liz Reusche for the assistance with the manuscript as well as Ulrich Barenbrock for his support in scientific project management. Research was supported by the Max Planck Society, the European Moltools Project and Applied Biosystems. This work is part of Andreas Dahl's PhD project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Dahl.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dahl, A., Sultan, M., Jung, A. et al. Quantitative PCR based expression analysis on a nanoliter scale using polymer nano-well chips. Biomed Microdevices 9, 307–314 (2007). https://doi.org/10.1007/s10544-006-9034-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-006-9034-2

Keywords

Navigation