Skip to main content
Log in

Microdevice-based delivery of gene products using sonoporation

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

This paper presents a proof-of-concept miniature device for delivery of antisense oligonucleotides (ASO). A piezoelectric, lead zirconate titanate (PZT) plate (0.5 cm2 × 0.75 mm) is used to transfect cells using cavitation-induced sonoporation. Both human umbilical vein endothelial cells (HUVEC) and human prostate cancer cells (PC3) are investigated in vitro. Preliminary results show that after sonication, the transfection rate for HUVEC increases by 96% compared to controls (p < 0.01). For PC3, the transfection rate increases by 31% compared to controls (p < 0.02). This research can potentially be applied in realizing a microelectromechanical system (MEMS)-based device for gene therapy in cancer treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Anderson, Gene therapy: Past, Present and future. Cancer Gene Therapy 10(Supp 1), S13 (2003).

    Google Scholar 

  2. S. Bao, B. Thrall, and D. Miller, Transfection of a reporter plasmid into cultured cells by sonoporaiton in vitro. Ultrasound in Medicine & Biology 23, 953–959 (1997).

    Google Scholar 

  3. J.-R. Bertrand, M. Pottier, A. Vekris, P. Opolon, A. Maksimemko, and C. Malvy, Comparison of antisense oligonucleotides and siRNAs in cell culture and in vivo. Biochemical and Biophysical Research Communications 296, 1000–1004 (2002).

    Article  Google Scholar 

  4. D. Bufalo, D. Trisciuoglio, M. Scarsella, U. Zangemeister-Wittke, and G. Zupi, Treatment of melanoma cells with a bcl-2/bcl-xl antisense oligonucleotide induces antiangiogenic activity. Oncogene 22, 8441–8447 (2003).

    Article  Google Scholar 

  5. N. Duzgunes, C. de Ilarduya, S. Simoes, R. Zhdanov, K. Konopka, and M. de Lima, Cationic liposomes for gene delivery: Novel cationic lipids and enhancement by proteins and peptides. Current Medicinal Chemistry 10, 1213–1220 (2003).

    Article  Google Scholar 

  6. A. El-Aneed, An overview of current delivery systems in cancer gene therapy. Journal of Controlled Release 94, 1–14 (2004).

    Article  Google Scholar 

  7. M. Fechheimer, J. Boylan, S. Parker, J. Sisken, G. Patel, and S. Zimmer, Transfection of mammalian cells with plasmid DNA by scrape loading and sonication loading. Proceeding of National Academy of Science USA 84, 8463–8467 (1987).

    Google Scholar 

  8. L.A. Ferrara, A.J. Fleischman, D. Togawa, T.W. Bauer, E.C. Benzel, and S. Roy, An in vivo biocompatibility assessment of MEMS materials for spinal fusion monitoringSource. Biomedical Microdevices 5, 297–302 (2003).

    Article  Google Scholar 

  9. S. Gambihler, M. Delius, and E.J.W., Permeabilization of the plasma membrane of l1210 mouse leukemia cells using lithotripter shock waves. The Journal of Membrane Biology 141, 267–275 (1994).

  10. M. Gleave and H. Miyake, Use of antisense oligonucleotides targeting the cytoprotective gene, clusterin, to enhance androgen- and chemo-sensitivity in prostate cancer. World Journal of Urology (2005).

  11. P. Huber, et al., In vitro and in vivo transfection of plasmid DNA in the dunning prostate tumor r3327-at1 is enhanced by focused ultrasound. Gene Therapy 7(17), 1516–1525 (2000).

    Article  Google Scholar 

  12. K. Ikuta, Y. Sasaki, H. Maegawa, and S. Maruo, Biochemical ic chip for pretreatment in biochemical experiments. In Proceedings of IEEE Micro Electro Mechanical Systems (2003).

  13. G. Kotzara, M. Freas, P, Abelb, A. Fleischmanc, S. Royc, C. Zormand, J.M. Morane, and J. Melzakd, Evaluation of MEMS materials of construction for implantable medical devices. Biomaterials 23, 2737–2750 (2002).

    Article  Google Scholar 

  14. A. Miller, C. Dou, and J. Song, DNA transfer and cell killing in epidermoid cells by diagnostic ultrasound activation of contrast agent gas bodies in vitro. Ultrasound in Medicine & Biology 29, 601–607 (2003).

    Article  Google Scholar 

  15. D. Miller, S. Pislaru, and J. Greenleaf, Sonoporation: mechanical DNA delivery by ultrasonic cavitation. Somatic Cell amd Molecular Genetics 27, 115–134 (2002).

    Article  Google Scholar 

  16. A. Miller and J. Quddus, Sonoporation of monolayer cells by diagnostic ultrasound activation of contrast-agent gas bodies. Ultrasound in Medicine & Biology 26, 661–667 (2000).

    Article  Google Scholar 

  17. A. Miller and J. Song, Tumor growth reduction and DNA transfer by cavitation-enhanced high-intensity focused ultrasound in vivo. Ultrasound in Medicine & Biology 29, 887–893 (2003).

    Article  Google Scholar 

  18. M. Nesterova and Y. Cho-Chung, Killing the messenger: Antisense DNA and siRNA. Current Drug Targets 5, 683–689 (2004).

    Article  Google Scholar 

  19. T. Niidome and L. Huang, Gene therapy progress and prospects: Nonviral vectors. Gene Therapy 9, 1647–1652 (2002).

    Article  Google Scholar 

  20. C. Ohl and B. Wolfrum, Detachment and sonoporation of adherent hela-cells by shock wave-induced cavitation. Biochimica et Biophysica Acta 1624, 131–138 (2003).

    Google Scholar 

  21. D. Rabussay, B. Dev, F. Jason, S. Georg, and Z. Lei, Enhancement of therapeutic drug and DNA delivery into cells by electroporation. Journal of Physics D: Applied Physics 36, 348–363 (2003).

    Article  Google Scholar 

  22. J. Santini, M. Cima, and R. Langer, A controlled-release microchip. Nature 397, 335–338 (1999).

    Article  Google Scholar 

  23. M. Sohn, R.L. Murray, K. Schwarz, J. Nyitray, P. Purray, A. Franko, K. Palmer, L. Diebel, and S. Dulchavsky, In-vivo particle mediated delivery of mRNA to mammalian tissues: ballistic and biologic effects. Wound Repair and Regeneration 9(4), 287–296 (2001).

    Article  Google Scholar 

  24. J. Song, D. Tata, L. Li, J. Taylor, S. Bao, and D. L. Miller, Combined shock-wave and immunogene therapy of mouse melanoma and renal carcinoma tumors. Ultrasound in Medicine & Biology 28, 957–964 (2002).

    Article  Google Scholar 

  25. J. Sundaram, B. Mellein, and S. Mitragotri, An experimental and theoretical analysis of ultrasound-induced permeabilization of cell membranes. Biophysical Journal 84, 3087–3101 (2003).

    Article  Google Scholar 

  26. J. Tousignant, A. Gates, L. Ingram, C. Johnson, J. Nietupski, S. Cheng, S. Eastman, and R. Scheule, Comprehensive analysis of the acute toxicities induced by systemic administration of cationic lipid:plasmid DNA complexes in mice. Human Gene Therapy 11, 2493–2513 (2000).

    Article  Google Scholar 

  27. K. Tschoep, G. Hartmann, R. Jox, S. Thompson, A. Eigler, A. Krug, S. Erhardt, G. Adams, S. Endres, and M. Delius, Shock waves: a novel method for cytoplasmic delivery of antisense oligonucleotides. Journal of Molecular Medicine 79, 306–313 (2001).

    Article  Google Scholar 

  28. I. Verma and N. Somia, Gene therapy-promises, problems and prospects. Nature 389, 239–242 (1997).

    Article  Google Scholar 

  29. Z. Yang, S. Matsumoto, and R. Maeda, A prototype of ultrasonic micro-degassing device for portable dialysis system. Sensors and Actuators A 95, 274–280 (2002).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mu Chiao.

Additional information

Part of this paper was presented at the 13th International Conference on Solid-State Sensors and Actuators (Transducers’ 05), June, 2005.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Siu, T., Rohling, R. & Chiao, M. Microdevice-based delivery of gene products using sonoporation. Biomed Microdevices 9, 295–300 (2007). https://doi.org/10.1007/s10544-006-9028-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-006-9028-0

Keywords

Navigation