Skip to main content
Log in

Biological application of multi-component nanowires in hybrid devices powered by F1-ATPase motors

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

In this paper, construction of hybrid device by integrating nanowires with F1-ATPase motors is described. The nickel nanowires and multi-segment nanowires, including gold and nickel, were fabricated by electrochemical deposition in nanoporous templates. The nickel nanowires functionalized by biotinylated peptide can be assembled directly onto F1-ATPase motors to act as the propellers. If the multi-component nanowires, including gold and nickel, were selectively functionalized by the thiol group modified ssDNA and the synthetic peptide, respectively, the biotinylated F1-ATPase motors can be attached to the biotinylated peptide on nickel segment of the nanowires. Then, the multi-component nanowires can also be used as the propellers, and one may observe the rotations of the multi-component nanowires driven by F1-ATPase motors. Therefore, introduction of multiple segments along the length of a nanowire can lead to a variety of multiple chemical functionalities, which can be selectively bound to cells and special biomolecules. This method provides an insight for the construction of other hybrid devices with its controlling arrangement of different biomolecule on designed nanometer scale structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • J.P. Abrahams, A.G.W. Leslie, R. Lutter, and J.E. Walker, Nature 370, 621–628 (1994).

    Article  Google Scholar 

  • G.D. Bachand and C.D. Montemagno, Biomedical Microdevices 2, 179–184 (2000).

    Article  Google Scholar 

  • R. Berry and J. Armitage, Advances in Microbial Physiology 41, 291–337 (1999).

    Article  Google Scholar 

  • S.M. Block, Cell 93, 5–8 (1998).

    Article  Google Scholar 

  • P.D. Boyer, Biochim. Biophys. Acta 1140, 215–250 (1993).

    Article  Google Scholar 

  • G.B. Cox, A.L. Fimmel, F. Gibson, and L. Hatch, Biochim. Biophys. Acta 849, 62–69 (1986).

    Article  Google Scholar 

  • I. Dobbie, M. Linari, G. Piazzesi, M. Reconditi, N. Koubassova, M. A. Ferenczi, V. Lombardi, and M. Irving, Nature 396, 383–387 (1998).

    Article  Google Scholar 

  • T.M. Duncan, V.V. Bulygin, Y. Zhou, M.L. Hutcheon, and R.L. Cross, Proc. Natl. Acad. Sci. 92, 10964–10968 (1995).

    Article  Google Scholar 

  • S. Engelbrecht and W. Junge, FEBS Lett. 414, 485–491 (1997).

    Article  Google Scholar 

  • J. Fritz, M.K. Baller, H.P. Lang, H. Rothuizen, P. Vettiger, E. Meyer, H.J. Güntherodt, C. Gerber, and J.K. Gimzewski, Science 288, 316–318 (2000).

    Article  Google Scholar 

  • I.R. Gibbons and J. Biol. Chem. 263, 15837–15840 (1988).

    Google Scholar 

  • G. Groth and J. Walker, FEBS Lett. 410, 117–123 (1997).

    Article  Google Scholar 

  • T.J. Huang, B. Brough, C.M. Ho, Y. Li, A.H. Flood, P.A. Bonvallet, H.R. Tseng, J.F. Stoddart, M. Baller, and S. Magonov, Appl. Phys. Lett. 85, 5391–5393 (2004).

    Article  Google Scholar 

  • A.J. Hunt, F. Gittes, and J. Howard, Biophysical Journal 67, 766–781 (1994).

    Article  Google Scholar 

  • L. Jia, S.G. Moorjani, T.N. Jackson, and W.O. Hancock, Biomedical Microdevices 6, 67–74 (2004).

    Article  Google Scholar 

  • D. Kaiser, Curr. Biol. 10, 777–780 (2000).

    Article  MathSciNet  Google Scholar 

  • K. Kitamura, M. Tokunaga, A.H. Iwane, and T. Yanagida, Nature 397, 129–134 (1999).

    Article  Google Scholar 

  • C. Lapoinet, A. Hltgren, D.M. Silevitch, E.J. Felton, D.H. Reich, and R.L. Leheny, Science 303, 652–655 (2004).

    Article  Google Scholar 

  • B.S. Lee, S.C. Lee, and L.S. Holliday, Biomedical Microdevices 5, 269–280 (2003).

    Article  Google Scholar 

  • T. Matsui and M. Yoshida, Biochimica et Biophysica ACTA-Bioenergetics 1231, 139–146 (1995).

    Article  Google Scholar 

  • C.D. Montemagno and G.D. Bachand, Nanotechnology 10, 225–231 (1999).

    Article  Google Scholar 

  • K. Nishio, A. Iwamoto-Kihara, A. Yamamoto, Y. Wada, and M. Futai, Proc. Natl. Acad. Sci. 99, 13448–13452 (2002).

    Article  Google Scholar 

  • H. Noji, R. Yasuda, M. Yoshida, and K. Jr. Kinosita, Nature 386, 299–302 (1997).

    Article  Google Scholar 

  • I. Ogilvie, R. Aggeler, and R.A. Capaldi, J. Biol. Chem. 272, 16652–16656 (1997).

    Article  Google Scholar 

  • H. Omote, N. Sambonmatsu, K. Saito, Y. Sambongi, A.I. Kihara, T. Yanagida, Y. Wada, and M. Futai, Proc. Natl. Acad. Sci. 96, 7780–7784 (1999).

    Article  Google Scholar 

  • G. Oster and H. Wang, Trends Cell Biol. 13, 114–121 (2003).

    Article  Google Scholar 

  • O. Pänke, K. Gumbiowski, W Junge, and S. Engelbrecht, FEBS Lett. 472, 34–38 (2000).

    Article  Google Scholar 

  • D.H. Reich, M. Tanase, A. Hultren, L.A. Bauer, C.S. Chen, and G.J. Meyer, J. Appl. Phys. 93, 7275–7280 (2003).

    Article  Google Scholar 

  • Q. Ren, Y. P. Zhao, L. Han, and H. B. Zhao, Nanotechnology 17, 1778–1785 (2006).

    Article  Google Scholar 

  • A.K. Salem, J. Chao, K.W. Leong, and P.C. Searson, Advanced Materials 16, 268–271 (2004).

    Article  Google Scholar 

  • C. Shingyoji, H. Higuchi, M. Yoshimura, E. Katayama, and T. Yanagida, Nature 393, 711–714 (1998).

    Article  Google Scholar 

  • R.K. Soong, G.D. Bachand, H.P. Neves, A.G. Olkhovets, H.G. Craighead, and C.D. Montemagno, Science 290, 1555–1558 (2000).

    Article  Google Scholar 

  • R.K. Soong, H.P. Neves, J.J. Schmidt, G.D. Bachand, and C.D. Montemagno, Biomedical Microdevices 3, 71–73 (2001).

    Article  Google Scholar 

  • L. Stryer, Biochemistry (Freeman, New York, 1995) p. 443.

    Google Scholar 

  • R. Yasuda, H. Noji, K. Jr. Kinosita, and M. Yoshida, Cell 93, 1117–1124 (1998).

    Article  Google Scholar 

  • R. Yasuda, H. Noji, M. Yoshida, K. Jr. Kinosita, and H. Itoh, Nature 410, 898–904 (2001).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya-Pu Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ren, Q., Zhao, YP., Yue, J.C. et al. Biological application of multi-component nanowires in hybrid devices powered by F1-ATPase motors. Biomed Microdevices 8, 201–208 (2006). https://doi.org/10.1007/s10544-006-8173-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-006-8173-9

Keywords

Navigation