Skip to main content
Log in

Multiscale modeling of protein transport in silicon membrane nanochannels. Part 1. Derivation of molecular parameters from computer simulations

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

We report in this account our efforts in the development of a novel multiscale simulation tool for integrated nanosystem design, analysis and optimization based on a three-tiered modeling approach consisting of (i) molecular models, (ii) atomistic molecular dynamics simulations, and (iii) dynamical models of protein transport at the continuum scale. In this work we used molecular simulations for the analysis of lysozyme adsorption on a pure silicon surface. The molecular modeling procedures adopted allowed (a) to elucidate the specific mechanisms of interaction between the biopolymer and the silicon surface, and (b) to derive molecular energetic and structural parameters to be employed in the formulation of a mathematical model of diffusion through silicon-based nanochannel membranes, thus filling the existing gap between the nano—and the macroscale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • M. Agashe, V. Raut, S.J. Stuart, and R.A. Latour, Langmuir 21, 1103 (2005).

    Article  Google Scholar 

  • F. Amato, C. Cosentino, S. Pricl, M. Ferrone, M. Fermeglia, and M. Ferrari, Biomed. Microdev. this issue (2006).

  • H.J.C. Berendsen, J.P.M. Postma, W.F. van Gunsteren, A. DiNola, A., and J.R. Haak, J.R. J. Chem. Phys. 81, 3684 (1984).

  • D.A. Case, D.A. Pearlman, J.D. Caldwell, T.E. Cheatham III, J. Wang, W.S. Ross, C.L. Simmerling, T.A. Darden, K.M. Merz, R.V. Stanton, A.L. Cheng, J.J. Vincent, M. Crowley, V. Tsui, H. Gohlke, R.J. Radmer, Y. Duan, J. Pitera, I. Massova, G.L. Seibel, U.C. Singh, P.K. Weiner, and P.A. Kollman, AMBER 7 (University of California, San Francisco, CA, 2002).

  • V. Castells, S. Yang, and P.R. Van Tassel, Phys. Rev. E 65, 31912 (2002).

    Article  Google Scholar 

  • P.M. Claesson, E. Blomberg, J.C. Fröberg, T. Nylander, and T. Arnebrant, Adv. Coll. Interf. Sci. 57, 161 (1995).

    Article  Google Scholar 

  • W.D. Cornell, P. Cieplak, C.I. Bayly, I.R. Gould, K.M. Merz, D.M. Ferguson, D.C. Spellmeyer, T. Fox, J.W. Caldwell, and P.A. Kollman, Am. Chem. Soc. 117, 5179 (1995).

    Article  Google Scholar 

  • E. Dickinson, Coll. Surf. B 15, 161 (1999).

    Article  Google Scholar 

  • C.A. Haynes and W. Norde, J. Coll. Interf. Sci. 169, 313 (1995).

    Article  Google Scholar 

  • T.A. Horbett and J.L. Brash (Eds.) Proteins at Interfaces II: Fundamentals and Applications (American Chemical Society, Washington, DC, 1995).

  • W.L. Jorgensen, J. Chandrasekhar, J.D. Madura, R.W. Impey, and M.L. Klein, J. Chem. Phys. 79, 926 (1983).

    Article  Google Scholar 

  • J. Kyte and R.F. Doolittle, J. Mol. Biol. 157, 105 (1982).

    Article  Google Scholar 

  • R.A. Latour, Curr. Op. Solid State Mat. Sci. 4, 413 (1999).

    Article  Google Scholar 

  • B. Lee and F.M. Richards, J. Mol. Biol. 55, 379 (1971).

    Article  Google Scholar 

  • S.M. Liu and C.A. Haynes, J. Coll. Interf. Sci. 275, 458 (2004).

    Article  Google Scholar 

  • J.R. Lu, T.J. Su, P.N Thirtle, R.K. Thomas, A.R. Rennie, and R. Cubitt, J. Coll. Interf. Sci. 206, 212 (1998).

    Article  Google Scholar 

  • K. Nakanishi, T. Sakiyama, and K. Imamura, J. Biosci. Bioeng. 91, 233 (2001).

    Article  Google Scholar 

  • W. Norde and T. Zoungrana, Biotechnol. Appl. Biochem. 28, 133 (1998).

    Google Scholar 

  • E.F. Pettersen, T.D. Goddard, C.C. Huang, G.S. Couch, D.M. Greenblatt, E.C. Meng, and T.E. Ferrin, J. Comput. Chem. 25, 1605 (2004).

    Article  Google Scholar 

  • G. Raffaini and F. Ganazzoli, Langmuir 20, 3371 (2004).

    Google Scholar 

  • J.P. Ryckaert, G. Ciccotti, and H.J.C. Berendsen, Comput. Phys. 23, 327 (1977).

    Article  Google Scholar 

  • S.M. Schwarzl, D. Huang, J.C. Smith, and S. Fisher, In Silico Biol. 3, 187 (2003).

    Google Scholar 

  • L. Verlet, Phys. Rev. 159, 98 (1967).

    Article  Google Scholar 

  • K.P. Wilson, B.A. Malcolm, and B.V. Matthews, J. Biol. Chem. 267, 10842 (1992).

    Google Scholar 

  • V.P. Zhdanov and B. Kasemo, Proteins: Struct., Funct., Genet. 42, 481 (2001).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabrina Pricl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pricl, S., Ferrone, M., Fermeglia, M. et al. Multiscale modeling of protein transport in silicon membrane nanochannels. Part 1. Derivation of molecular parameters from computer simulations. Biomed Microdevices 8, 277–290 (2006). https://doi.org/10.1007/s10544-006-0031-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-006-0031-2

Keywords

Navigation