Skip to main content
Log in

Ultrafast Nanolaser Flow Device for Detecting Cancer in Single Cells

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Currently, pathologists rely on labor-intensive microscopic examination of tumor cells using staining techniques originally devised in the 1880s that depend heavily on specimen preparation and that can give false readings. Emerging BioMicroNanotechnologies (Gourley, 2005) have the potential to provide accurate, realtime, high throughput screening of tumor cells without invasive chemical reagents. These techniques are critical to advancing early detection, diagnosis, and treatment of disease. Using a new technique to rapidly assess the properties of cells flown through a nanolaser semiconductor device, we discovered a method to rapidly assess the respiratory health of a single mammalian cell. The key discovery was the elucidation of biophotonic differences in normal and transformed (cancer) mouse liver cells by using intracellular mitochondria as biomarkers for disease. This technique holds promise for detecting cancer at a very early stage and could nearly eliminate delays in diagnosis and treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • V. Backman et al., Selected Topics in Quantum Electronics 5(4), 1019 (1998).

    Google Scholar 

  • C.F. Bohren and D.R. Huffman, Absorption and Scattering of Light Small Particles (Wiley, New York, 1983).

    Google Scholar 

  • C.D. Bortner and J.A. Cidlowski, J Biol Chem. 274(31), 21953–21962 (1999).

    Article  Google Scholar 

  • N.N. Boustany, R. Drezek, and N.V. Thakor, Biophys. J. 83(3), 1691–177 (2002).

    Article  Google Scholar 

  • H. Cao, Y.G. Zhao, S.T. Ho, E.W. Seelig, Q.H. Wang, and R.P. Chang, Phys. Rev. Lett. 82, 2278 (1999).

    Article  Google Scholar 

  • H. Cao, Y.G. Zhao, S.T. Ho, E.W. Seelig, Q.H. Wang, and R.P. Chang, Phys. Rev. Lett. 82, 2278–2281 (1999).

    Article  Google Scholar 

  • S.J. Cox, V.Y. Reshetnyakzx, and T.J. Sluckinz, J. Phys. D: Appl. Phys. 31, 1611–1625 (1998).

    Article  Google Scholar 

  • R. Drezek, A. Dunn, and R. Richards-Kortum, Optical Express 6, 147–157 (2000).

    Google Scholar 

  • S.V. Frolov, Z.V. Vardeny, K. Yoshino, A. Zakhidov, and R.H. Baughman, Phys. Rev. B 59, R5284 (1999).

    Article  Google Scholar 

  • W. Gao, Y. Pu, K.Q. Luo, and D.C. Chang, Journal of Cell Science 114, 2855–2862 (2001).

    Google Scholar 

  • A.Z. Genack, and J.M. Drake, Nature 368, 400 (1994).

    Article  Google Scholar 

  • C. Gouedard, D. Husson, C. Sauteret, F. Auzel, and A. Migus, J. Opt. Soc. Am. B 10, 2358 (1993).

    Article  Google Scholar 

  • P.L. Gourley, Biotechnology Progress, American Chemical Society to appear (Feb. 2005).

  • P.L. Gourley, J. Phys. D: Appl. Phys. 36(14), R228–R229 (2003).

    Article  MathSciNet  Google Scholar 

  • P.L. Gourley, P. Chen, R.G. Copeland, J.D. Cox, J.K. Hendricks, A.E. McDonald, D.Y. Sasaki, M.E. Keep, and J.R. Karlsson, in Proc. Conf. on Microfluidics, BioMEMS and Medical Microsystems SPIE 5345, edited by P. Woias and I. Papautsky, (Photonics West, San Jose, 2004), p. 51.

    Google Scholar 

  • P.L. Gourley, R.G. Copeland, J.K. Hendricks, A.E. McDonald, and R.K. Naviaux, IEEE J. of Selected Topics in Quantum Electronics: Biophotonics, accepted.

  • A. Ishimaru, Wave Propagation and Scattering in Random Media vol 1 and 2, (Academic, New York, 1978).

    Google Scholar 

  • L.V. Johnson, M.L. Walsh, and L.B. Chen, Proc. Natl. Acad. Sci. (77, USA, 1980), p. 990–994.

  • G. Kroemer, and J.C. Reed, PubMed Nat. Med. 6, 513–519 (2000).

    Google Scholar 

  • N.M. Lawandy, R.M. Balachandran, A.S.L. Gomes, and E. Sauvain, Nature 368, 436 (1994).

    Article  Google Scholar 

  • V.S. Letokhov, Sov. Phys. JEPT 26, 835 (1968).

    Google Scholar 

  • S. Modica-Napolitano and K.K. Singh, Expert Reviews in Molecular Medicine: http://www.expertreviews.org/ (Cambridge University Press ISSN 1462–3994, Cambridge, 2002).

  • J.R. Mourant, J.P. Freyer, A.H. Hielscher, A.A. Elick, D. Shen, and T. Johnson, Appl. Opt. 37, 3586–3593 (1998).

    Article  Google Scholar 

  • R.G. Newton, Scattering Theory of Waves in Particles, 2nd edn. (Springer, Berlin, 1982).

    Google Scholar 

  • K. Polyak, et al., Pub Med Nat. Genet 20, 291–293 (1998).

    Google Scholar 

  • K.K. Singh, Mitochondrial DNA Mutations in Aging, Disease and Cancer (Springer, New York, 1998).

    Google Scholar 

  • K.K. Singh, Mitochondrion 1, 1–2. (2000).

    Google Scholar 

  • A. Tzagoloff, Mitochondria (Plenum Press, New York, 1982).

    Google Scholar 

  • H.C. Van De Hulst, Light Scattering by Small Particles (Wiley, New York, 1957).

    Google Scholar 

  • O. Warburg, Oxygen, The Creator of Differentiation, Biochemical Energetics (Academic Press, NewYork, 1966).

    Google Scholar 

  • O. Warburg, Metabolism of Tumors (Arnold Constable, London, UK, 1930).

    Google Scholar 

  • O. Warburg, Science 123, 309–314 (1956).

    Google Scholar 

  • D.S. Wiersma and A. Lagendijk, “Laser Action in White paint” http://www.science.uva.nl/research/scm/index.html.

  • D.S. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini, Nature (London) 390, 671 (1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul L. Gourley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gourley, P.L., Hendricks, J.K., McDonald, A.E. et al. Ultrafast Nanolaser Flow Device for Detecting Cancer in Single Cells. Biomed Microdevices 7, 331–339 (2005). https://doi.org/10.1007/s10544-005-6075-x

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-005-6075-x

Keywords

Navigation