Skip to main content
Log in

A SU-8/PDMS Hybrid Microfluidic Device with Integrated Optical Fibers for Online Monitoring of Lactate

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

A microfluidic device with integrated optical fibres was developed for online monitoring of lactate. The device consists of a SU-8 waveguide, microfluidic channels and grooves for the insertion of optic fibres. It was fabricated by one-step photolithography of SU-8 polymer resist. Different channel widths (50–300 μm) were tested in terms of detection sensitivity. A wide range of flow rates were applied to investigate the influence of flow rate on signal fluctuations. The separation between optical fibre sensor and microfluidic channel and the width of fluidic channel have been optimized to maximize the detection sensitivity. It was revealed that 250 μm of channel width is the optimum light path length for a compromise between detection sensitivity and interference of ambient light. The independence of detection signals on flow rates was demonstrated within the range of flow rate (0.5–5 ml/hr) tested. Compared with conventional lactate detection, the device is proved to have high accuracy, relatively low limit of detection (50 mg/L) and reasonably fast response time (100 sec). The fabrication of device is simple and low cost. The present work has provided some fundamental data for further system optimization to meet specific detection requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • S. Arscott, F. Garet, P. Mounaix, L. Duvillaret, J.L. Doutaz, and D. Lippens, Electron. Lett. 35, 243–244 (1999).

    Google Scholar 

  • V. Casimiri and C. Burstein, Analytica Chimica Acta 361, 45–53 (1998).

    Article  Google Scholar 

  • V. Casimiri and C. Burstein, Biosensors and Bioelectronics 11, 783–789 (1996).

    Article  Google Scholar 

  • L.M. Fu, R.J. Yang, C.H. Lin, Y.J. Pan, and G.B. Lee, Analytica Chimica Acta 507, 163–169 (2004).

    Article  Google Scholar 

  • F.G. Gao, A.S. Jeevarajan, and M.M. Anderson, Biotechnology and Bioengineering 86, 425–433 (2004).

    Article  Google Scholar 

  • R.J. Jackman, T.M. Floyd, R. Ghodssi, M.A. Schmidt, and K.F. Jensen, J. Micromech. Microeng. 11, 1–8 (2001).

    Article  Google Scholar 

  • J. Katrlik et al., Analytica Chimica Acta 379, 193–200 (1999).

    Google Scholar 

  • G.J. Kost, T.H. Nguyen, and Z. Tang, Arch Pathol Lab Med 124, 1128–1134 (2000).

    Google Scholar 

  • K. Kurihara, H. Ohkawa, Y. Iwasaki, O. Niwa, T. Tobita, and K. Suzuki, Analytica Chimica Acta 523, 165–170 (2004).

    Article  Google Scholar 

  • R. Kurita, K. Hayashi, X. Fan, K. Yamamoto, T. Kato, and O. Niwa, Sensors and Acturators B 87, 296–303 (2002).

    Google Scholar 

  • R.B. Lee and J.P.G. Urban, Biochem. J. 321, 95–102 (1997).

    Google Scholar 

  • G.B. Lee, C.H. Lin, and G.L. Chang, Sensors and Actuators A 103, 165–170 (2003).

    Article  Google Scholar 

  • C.H. Lin, G.B. Lee, L.M. Fu, and S.H. Chen, Biosensors and Bioelectronics 20, 83–90 (2004).

    Google Scholar 

  • C.H. Lin, G.B. Lee, S.H. Chen, and G.L. Chang, Sensors and Actuators A 107, 125–131 (2003).

    Article  Google Scholar 

  • K.B. Mogensen, J. El-Ali, A. Wolff, and J.P. Kutter, Applied Optics 42, 4072–4079 (2003).

    Google Scholar 

  • M. Nathan, O. Levy, I. Goldfarb, and A. Ruzin, Journal of Applied Physics 94, 7932–7934 (2003).

    Article  Google Scholar 

  • F. Palmisano, R. Rizzi, D. Centonze, and P.G. Zambonin, Biosensors and Bioelectronics 15, 531–539 (2000).

    Article  Google Scholar 

  • J. Perdomo, H. Hinkers, C. Sundermeier, W. Seifert, O. Martinez Morell, and M. Knoll, Biosensors and Bioelectronics 15, 515–522 (2000).

    Article  Google Scholar 

  • P.S. Petrou, I. Moser, and G. Jobst, Biosensors and Bioelectronics 18, 613–619 (2003).

    Article  Google Scholar 

  • B.R. Soller, et al., J. Card Surg. 19, 167–174 (2004).

    Article  Google Scholar 

  • M. Suzuki and H. Akaguma, Sensors and Acturators B 64, 136–141 (2000).

    Google Scholar 

  • Y.S. Wu, T.H. Tsai, T.F. Wu, and F.C. Cheng, Journal of Chromatography A 913, 341–347 (2001).

    Article  Google Scholar 

  • L. Yang, P.T. Kissinger, and T. Ohara, Current Separation 14, 31–35 (1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng Cui.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, MH., Cai, H., Xu, X. et al. A SU-8/PDMS Hybrid Microfluidic Device with Integrated Optical Fibers for Online Monitoring of Lactate. Biomed Microdevices 7, 323–329 (2005). https://doi.org/10.1007/s10544-005-6074-y

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-005-6074-y

Keywords

Navigation