Skip to main content
Log in

Multilevel local defect-correction method for the non-selfadjoint Steklov eigenvalue problems

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we design a multilevel local defect-correction method to solve the non-selfadjoint Steklov eigenvalue problems. Since the computation work needed for solving the non-selfadjoint Steklov eigenvalue problems increases exponentially as the scale of the problems increase, the main idea of our algorithm is to avoid solving large-scale equations especially large-scale Steklov eigenvalue problems directly. Firstly, we transform the non-selfadjoint Steklov eigenvalue problem into some symmetric boundary value problems defined in a multilevel finite element space sequence, and some small-scale non-selfadjoint Steklov eigenvalue problems defined in a low-dimensional auxiliary subspace. Next, the local defect-correction method is used to solve the symmetric boundary value problems, then the difficulty of solving these symmetric boundary value problems is further reduced by decomposing these large-scale problems into a series of small-scale subproblems. Overall, our algorithm can obtain the optimal error estimates with linear computational complexity, and the conclusions are proved by strict theoretical analysis which are different from the developed conclusions for equations with the Dirichlet boundary conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Ahn, H.: Vibrations of a pendulum consisting of a bob suspended from a wire: the method of integral equations. Quart. Appl. Math. 39(1), 109–117 (1981)

    Article  MathSciNet  Google Scholar 

  2. Andreev, A., Todorov, T.: Isoparametric finite-element approximation of a Steklov eigenvalue problem. IMA J. Numer. Anal. 24(2), 309–322 (2004)

    Article  MathSciNet  Google Scholar 

  3. Armentano, M.G., Padra, C.: A posteriori error estimates for the Steklov eigenvalue problem. Appl. Numer. Math. 58, 593–601 (2008)

    Article  MathSciNet  Google Scholar 

  4. Babuška, I., Osborn, J.: Eigenvalue Problems. In: Handbook of Numerical Analysis, Vol. II, (Eds. P. G. Lions and Ciarlet P.G.), Finite Element Methods (Part 1), North-Holland, Amsterdam, 641–787 (1991)

  5. Bergman, S., Schiffer, M.: Kernel Functions and Elliptic Differential Equations in Mathematical Physics. Courier Corporation, North Chelmsford (2005)

    Google Scholar 

  6. Bi, H., Li, Z., Yang, Y.: Local and parallel finite element algorithms for the Steklov eigenvalue problem. Numer. Methods Partial Differ. Equ. 32(2), 399–417 (2016)

    Article  MathSciNet  Google Scholar 

  7. Bi, H., Yang, Y.: A two-grid method of the non-conforming Crouzeix–Raviart element for the Steklov eigenvalue problem. Appl. Math. Comput. 217, 9669–9678 (2011)

    MathSciNet  Google Scholar 

  8. Bi, H., Zhang, Y., Yang, Y.: Two-grid discretizations and a local finite element scheme for a non-selfadjoint Stekloff eigenvalue problem. Comput. Math. Appl. 79(7), 1895–1913 (2020)

    Article  MathSciNet  Google Scholar 

  9. Bramble, J.H., Osborn, J.E.: Approximation of Steklov eigenvalues of non-selfadjoint second order elliptic operators, in The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations, pp. 387–408. Academic Press, New York (1972)

  10. Brenner, S., Scott, L.: The Mathematical Theory of Finite Element Methods. Springer-Verlag, New York (1994)

    Book  Google Scholar 

  11. Canavati, J., Minzoni, A.: A discontinuous Steklov problem with an application to water waves. J. Math. Anal. Appl. 69(2), 540–558 (1979)

    Article  MathSciNet  Google Scholar 

  12. Cakoni, F., Colton, D., Meng, S., Monk, P.: Stekloff eigenvalues in inverse scattering. SIAM J. Appl. Math. 76(4), 1737–1763 (2016)

    Article  MathSciNet  Google Scholar 

  13. Cao, L., Zhang, L., Allegretto, W., Lin, Y.: Multiscale asymptotic method for Steklov eigenvalue equations in composite media. SIAM J. Numer. Anal. 51, 273–296 (2013)

    Article  MathSciNet  Google Scholar 

  14. Chen, H., Xie, H., Xu, F.: A full multigrid method for eigenvalue problems. J. Comput. Phys. 322, 747–759 (2016)

    Article  MathSciNet  Google Scholar 

  15. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978)

    Google Scholar 

  16. Dai, X., Zhou, A.: Three-scale finite element discretizations for quantum eigenvalue problems. SIAM J. Numer. Anal. 46(1), 295–324 (2008)

    Article  MathSciNet  Google Scholar 

  17. Dong, X., He, Y., Wei, H., Zhang, Y.: Local and parallel finite element algorithm based on the partition of unity method for the incompressible MHD flow. Adv. Comput. Math. 44(4), 1295–1319 (2018)

    Article  MathSciNet  Google Scholar 

  18. Du, G., Zuo, L.: Local and parallel finite element post-processing scheme for the Stokes problem. Comput. Math. Appl. 73, 129–140 (2017)

    Article  MathSciNet  Google Scholar 

  19. Evans, D.V., McIver, P.: Resonant frequencies in a container with a vertical baffle. J. Fluid Mech. 175, 295–307 (1987)

    Article  Google Scholar 

  20. Du, G., Hou, Y., Zuo, L.: A modified local and parallel finite element method for the mixed Stokes-Darcy model. J. Math. Anal. Appl. 435(2), 1129–1145 (2016)

    Article  MathSciNet  Google Scholar 

  21. Han, H., Guan, Z., He, B.: Boundary element approximation of Steklov eigenvalue problem. J. Chin. Univ. Appl. Math. Ser. A 9, 231–238 (1994)

    MathSciNet  Google Scholar 

  22. He, Y., Mei, L., Shang, Y., Cui, J.: Newton iterative parallel finite element algorithm for the steady Navier–Stokes equations. J. Sci. Comput. 44, 92–106 (2010)

    Article  MathSciNet  Google Scholar 

  23. He, Y., Xu, J., Zhou, A.: Local and parallel finite element algorithms for the Navier–Stokes problem. J. Comput. Math. 24(3), 227–238 (2006)

    MathSciNet  Google Scholar 

  24. Huang, J., Lü, T.: The mechanical quadrature methods and their extrapolation for solving BIE of Steklov eigenvalue problems. J. Comput. Math. 22, 719–726 (2004)

    MathSciNet  Google Scholar 

  25. Jia, S., Xie, H., Xie, M., Xu, F.: A full multigrid method for nonlinear eigenvalue problems. Sci. China Math. 59, 2037–2048 (2016)

    Article  MathSciNet  Google Scholar 

  26. Lin, Q., Xie, H.: A multi-level correction scheme for eigenvalue problems. Math. Comp. 84(291), 71–88 (2015)

    Article  MathSciNet  Google Scholar 

  27. Liu, J., Sun, J., Turner, T.: Spectral indicator method for a non-selfadjoint Steklov eigenvalue problem. J. Sci. Comput. 79(3), 1814–1831 (2019)

    Article  MathSciNet  Google Scholar 

  28. Liu, Q., Hou, Y.: Local and parallel finite element algorithms for time-dependent convection-diffusion equations. Appl. Math. Mech. Engl. Ed. 30, 787–794 (2009)

    Article  MathSciNet  Google Scholar 

  29. Ma, F., Ma, Y., Wo, W.: Local and parallel finite element algorithms based on two-grid discretization for steady Navier–Stokes equations. Appl. Math. Mech. 28(1), 27–35 (2007)

    Article  MathSciNet  Google Scholar 

  30. Ma, Y., Zhang, Z., Ren, C.: Local and parallel finite element algorithms based on two-grid discretization for the stream function form of Navier–Stokes equations. Appl. Math. Comput. 175, 786–813 (2006)

    MathSciNet  Google Scholar 

  31. Planchard, J., Thomas, B.: On the dynamical stability of cylinders placed in cross-flow. J. Fluids Struct. 7(4), 321–339 (1993)

    Article  Google Scholar 

  32. Russo, A.D., Alonso, A.E.: A posteriori error estimates for nonconforming approximations of Steklov eigenvalue problem. Comput. Appl. Math. 62, 4100–4117 (2011)

    Article  MathSciNet  Google Scholar 

  33. Shang, Y., Wang, K.: Local and parallel finite element algorithms based on two-grid discretizations for the transient Stokes equations. Numer. Algorithms 54, 195–218 (2010)

    Article  MathSciNet  Google Scholar 

  34. Shang, Y., He, Y., Luo, Z.: A comparison of three kinds of local and parallel finite element algorithms based on two-grid discretizations for the stationary Navier-Stokes equations. Comput. Fluids 40, 249–257 (2011)

    Article  MathSciNet  Google Scholar 

  35. Tang, Q., Huang, Y.: Local and parallel finite element algorithm based on Oseen-type iteration for the stationary incompressible MHD flow. J. Sci. Comput. 70, 149–174 (2017)

    Article  MathSciNet  Google Scholar 

  36. Tang, W.J., Guan, Z., Han, H.D.: Boundary element approximation of Steklov eigenvalue problem for helmholtz equation. J. Comput. Math. 2, 165–178 (1998)

    MathSciNet  Google Scholar 

  37. Watson, E.B., Evans, D.V.: Resonant frequencies of a fluid in containers with internal bodies. J. Engrg. Math. 25(2), 115–135 (1991)

    Article  MathSciNet  Google Scholar 

  38. Xie, H.: A multigrid method for eigenvalue problem. J. Comput. Phys. 274, 550–561 (2014)

    Article  MathSciNet  Google Scholar 

  39. Xu, F.: A full multigrid method for the Steklov eigenvalue problem. Internat. J. Comput. Math. 96(12), 2371–2386 (2019)

    Article  MathSciNet  Google Scholar 

  40. Xu, F., Chen, L., Huang, Q.: Local defect-correction method based on multilevel discretization for Steklov eigenvalue problem. ESAIM 55(6), 2899–2920 (2021)

    Article  MathSciNet  Google Scholar 

  41. Xu, J., Zhou, A.: Local and parallel finite element algorithms based on two-grid discretizations. Math. Comput. 69(231), 881–909 (1999)

    Article  MathSciNet  Google Scholar 

  42. Xu, J., Zhou, A.: Local and parallel finite element algorithms for eigenvalue problems. Acta Math. Appl. Sin. Engl. Ser. 18, 185–200 (2002)

    Article  MathSciNet  Google Scholar 

  43. Yang, Y., Zhang, Y., Bi, H.: Non-conforming Ciarlet-Raviart element approximation for Stekloff eigenvalues in inverse scattering, (2018), arXiv:1808.01609v1

  44. Yu, J., Shi, F., Zheng, H.: Local and parallel finite element algorithms based on the partition of unity for the Stokes problem. SIAM J. Sci. Comput. 36(5), C547–C567 (2014)

    Article  MathSciNet  Google Scholar 

  45. Zeng, Y., Wang, F.: A posteriori error estimates for a discontinuous Galerkin approximation of Steklov eigenvalue problems. Appl. Math. 62(3), 243–267 (2017)

    Article  MathSciNet  Google Scholar 

  46. Zhang, Y., Bi, H., Yang, Y.: A multigrid correction scheme for a new Steklov eigenvalue problem in inverse scattering. arXiv:1806.05788v1 (2019)

  47. Zheng, H., Yu, J., Shi, F.: Local and parallel finite element algorithm based on the partition of unity for incompressible flows. J. Sci. Comput. 65(2), 512–532 (2015)

    Article  MathSciNet  Google Scholar 

  48. Zheng, H., Shi, F., Hou, Y., Zhao, J., Cao, Y., Zhao, R.: New local and parallel finite element algorithm based on the partition of unity. J. Math. Anal. Appl. 435(1), 1–19 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Funding

The Project is funded by Beijing Municipal Natural Science Foundation Grant No. 1232001, General projects of science and technology plan of Beijing Municipal Education Commission Grant No. KM202110005011, National Natural Science Foundation of China Grant nos. 11801021 and 12001402.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manting Xie.

Ethics declarations

Conflict of interest

The authors declared that they have no conflicts of interest to this work.

Additional information

Communicated by Rolf Stenberg.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, F., Wang, B. & Xie, M. Multilevel local defect-correction method for the non-selfadjoint Steklov eigenvalue problems. Bit Numer Math 64, 21 (2024). https://doi.org/10.1007/s10543-024-01022-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10543-024-01022-z

Keywords

Mathematics Subject Classification

Navigation