Skip to main content
Log in

Bounded perturbations resilient iterative methods for linear systems and least squares problems: operator-based approaches, analysis, and performance evaluation

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

We examine some bounded perturbations resilient iterative methods for addressing (constrained) consistent linear systems of equations and (constrained) least squares problems. We introduce multiple frameworks rooted in the operator of the Landweber iteration, adapting the operators to facilitate the minimization of absolute errors or residuals. We demonstrate that our operator-based methods exhibit comparable speed to powerful methods like CGLS, and we establish that the computational cost of our methods is nearly equal to that of CGLS. Furthermore, our methods possess the capability to handle constraints (e.g. non-negativity) and control the semi-convergence phenomenon. In addition, we provide convergence analysis of the methods when the current iterations are perturbed by summable vectors. This allows us to utilize these iterative methods for the superiorization methodology. We showcase their performance using examples drawn from tomographic imaging and compare them with CGLS, superiorized conjugate gradient (S-CG), and the non-negative flexible CGLS (NN-FCGLS) methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Algorithm 1
Algorithm 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hansen, P.C.: Discrete Inverse Problems: Insight and Algorithms. SIAM, Philadelphia (2010)

    Book  Google Scholar 

  2. Hansen, P.C.: Rank-Deficient and Discrete Ill-Posed Problems: Numerical Aspects of Linear Inversion. SIAM, Philadelphia (1998)

    Book  Google Scholar 

  3. Natterer, F.: The Mathematics of Computerized Tomography. SIAM, Philadelphia (2001)

    Book  Google Scholar 

  4. Abbasi, M., Ahmadinia, M., Ahmadinia, A.: A new step size selection strategy for the superiorization methodology using subgradient vectors and its application for solving convex constrained optimization problems. IMA J. Numer. Anal. drad070 (2023)

  5. Butnariu, D., Davidi, R., Herman, G.T., Kazantsev, I.G.: Stable convergence behavior under summable perturbations of a class of projection methods for convex feasibility and optimization problems. IEEE J. Sel. Topics Signal Process. 1(4), 540–547 (2007)

    Article  ADS  Google Scholar 

  6. Censor, Y., Davidi, R., Herman, G.T.: Perturbation resilience and superiorization of iterative algorithms. Inverse Prob. 26(6), 065008 (2010)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  7. Butnariu, D., Reich, S., Zaslavski, A.J.: Convergence to fixed points of inexact orbits of Bregman-monotone and of nonexpansive operators in Banach spaces. Fixed Point Theory Appl. Yokohama: Yokohama Publishers, pp. 11–32 (2006)

  8. Butnariu, D., Reich, S., Zaslavski, A.J.: Stable convergence theorems for infinite products and powers of nonexpansive mappings. Numer. Funct. Anal. Optim. 29(3–4), 304–323 (2008)

    Article  MathSciNet  Google Scholar 

  9. Censor, Y.: Can linear superiorization be useful for linear optimization problems? Inverse Prob. 33(4), 044006 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  10. Nikazad, T., Abbasi, M.: Perturbation-resilient iterative methods with an infinite pool of mappings. SIAM J. Numer. Anal. 53(1), 390–404 (2015)

    Article  MathSciNet  Google Scholar 

  11. Nikazad, T., Abbasi, M.: A unified treatment of some perturbed fixed point iterative methods with an infinite pool of operators. Inverse Prob. 33(4), 044002 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  12. Reem, D., De Pierro, A.: A new convergence analysis and perturbation resilience of some accelerated proximal forward-backward algorithms with errors. Inverse Prob. 33(4), 044001 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  13. Zibetti, M.V.W., Lin, C., Herman, G.T.: Total variation superiorized conjugate gradient method for image reconstruction. Inverse Prob. 34(3), 034001 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  14. Censor, Y.: Weak and strong superiorization: between feasibility-seeking and minimization. An. Univ. Ovidius Constanta-Seria Matematica 23(3), 41–54 (2015)

    Article  MathSciNet  Google Scholar 

  15. Censor, Y., Davidi, R., Herman, G.T., Schulte, R.W., Tetruashvili, L.: Projected subgradient minimization versus superiorization. J. Optim. Theory Appl. 160(3), 730–747 (2014)

    Article  MathSciNet  Google Scholar 

  16. Herman, G.T., Garduño, E., Davidi, R., Censor, Y.: Superiorization: an optimization heuristic for medical physics. Med. Phys. 39(9), 5532–5546 (2012)

    Article  PubMed  Google Scholar 

  17. Penfold, S., Schulte, R.W., Censor, Y., Rosenfeld, A.B.: Total variation superiorization schemes in proton computed tomography image reconstruction. Med. Phys. 37(11), 5887–5895 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Censor, Y., Zaslavski, A.J.: Convergence and perturbation resilience of dynamic string-averaging projection methods. Comput. Optim. Appl. 54(1), 65–76 (2013)

    Article  MathSciNet  Google Scholar 

  19. Nikazad, T., Abbasi, M., Afzalipour, L., Elfving, T.: A new step size rule for the superiorization method and its application in computerized tomography. Numer. Algorithms 90(3), 1253–1277 (2022)

    Article  MathSciNet  Google Scholar 

  20. Nikazad, T., Abbasi, M., Mirzapour, M.: Convergence of string-averaging method for a class of operators. Optim. Methods Softw. 31(6), 1189–1208 (2016)

    Article  MathSciNet  Google Scholar 

  21. Nikazad, T., Abbasi, M.: Perturbed fixed point iterative methods based on pattern structure. Math. Methods Appl. Sci. 41(14), 5582–5592 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  22. Landweber, L.: An iteration formula for fredholm integral equations of the first kind. Am. J. Math. 73(3), 615–624 (1951)

    Article  MathSciNet  Google Scholar 

  23. Nikazad, T., Abbasi, M., Elfving, T.: Error minimizing relaxation strategies in Landweber and Kaczmarz type iterations. J. Inverse Ill-Posed Problems 25(1), 35–56 (2017)

    Article  MathSciNet  Google Scholar 

  24. Hansen, P.C., Jørgensen, J.S.: AIR tools II: algebraic iterative reconstruction methods, improved implementation. Numer. Algorithms 79(1), 107–137 (2018)

    Article  MathSciNet  Google Scholar 

  25. Gazzola, S., Wiaux, Y.: Fast nonnegative least squares through flexible Krylov subspaces. SIAM J. Sci. Comput. 39(2), 655–679 (2017)

    Article  MathSciNet  Google Scholar 

  26. Neto, E.S.H., De Pierro, Á.R.: Incremental subgradients for constrained convex optimization: a unified framework and new methods. SIAM J. Optim. 20(3), 1547–1572 (2009)

    Article  MathSciNet  Google Scholar 

  27. Sørensen, H.H.B., Hansen, P.C.: Multicore performance of block algebraic iterative reconstruction methods. SIAM J. Sci. Comput. 36(5), 524–546 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank anonymous reviewers for their detailed and constructive comments which much improved the paper. The second author wishes to thank the Isaac Newton Institute for Mathematical Sciences and the London Mathematical Society for the financial support and the School of Engineering at Newcastle University for their hospitality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mokhtar Abbasi.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Communicated by Rosemary Anne Renaut.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbasi, M., Nikazad, T. Bounded perturbations resilient iterative methods for linear systems and least squares problems: operator-based approaches, analysis, and performance evaluation. Bit Numer Math 64, 15 (2024). https://doi.org/10.1007/s10543-024-01015-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10543-024-01015-y

Keywords

Mathematics Subject Classification

Navigation