Skip to main content
Log in

A posteriori error estimates for a dual finite element method for singularly perturbed reaction–diffusion problems

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

A posteriori error estimates are established for a two-step dual finite element method for singularly perturbed reaction–diffusion problems. The method can be considered as a modified least-squares finite element method. The least-squares functional is the basis for our residual-type a posteriori error estimators, which are shown to be reliable and efficient with respect to the error in an energy-type norm. Moreover, guaranteed upper bounds for the errors in the computed primary and dual variables are derived; these bounds are then used to drive an adaptive algorithm for our finite element method, yielding any desired accuracy. Our theory does not require the meshes generated to be shape-regular. Numerical experiments show the effectiveness of our a posteriori estimators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ainsworth, M., Babuška, I.: Reliable and robust a posteriori error estimating for singularly perturbed reaction–diffusion problems. SIAM J. Numer. Anal. 36(2), 331–353 (1999)

    Article  MathSciNet  Google Scholar 

  2. Ainsworth, M., Vejchodský, T.: Fully computable robust a posteriori error bounds for singularly perturbed reaction–diffusion problems. Numer. Math. 119(2), 219–243 (2011)

    Article  MathSciNet  Google Scholar 

  3. Ainsworth, M., Vejchodský, T.: Robust error bounds for finite element approximation of reaction-diffusion problems with non-constant reaction coefficient in arbitrary space dimension. Comput. Methods Appl. Mech. Eng. 281, 184–199 (2014)

    Article  MathSciNet  ADS  Google Scholar 

  4. Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods: Springer Series in Computational Mathematics, vol. 15. Springer, New York (1991)

    Google Scholar 

  5. Cai, Z., JaEun, K.: A dual finite element method for a singularly perturbed reaction-diffusion problem. SIAM J. Numer. Anal. 58(3), 1654–1673 (2020)

  6. Cheddadi, I., Fučík, R., Prieto, M.I., Vohralík, M.: Guaranteed and robust a posteriori error estimates for singularly perturbed reaction–diffusion problems. M2AN Math. Model. Numer. Anal 43(5), 867–888 (2009)

    Article  MathSciNet  Google Scholar 

  7. Chen, L.: iFEM: an integrated finite element method package in MATLAB. lyc102.github.io/ifem/ (2009)

  8. Ciarlet, P., Do, M.H., Madiot, F.: A posteriori error estimates for mixed finite element discretizations of the neutron diffusion equations. ESAIM Math. Model. Numer. Anal. 57(1), 1–27 (2023)

    Article  MathSciNet  CAS  Google Scholar 

  9. Creusé, E., Nicaise, S., Kunert, G.: A posteriori error estimation for the Stokes problem: anisotropic and isotropic discretizations. Math. Models Methods Appl. Sci. 14(9), 1297–1341 (2004)

    Article  MathSciNet  Google Scholar 

  10. Demlow, A., Kopteva, N.: Maximum-norm a posteriori error estimates for singularly perturbed elliptic reaction–diffusion problems. Numer. Math. 133(4), 707–742 (2016)

    Article  MathSciNet  Google Scholar 

  11. Dörfler, W.: A convergent adaptive algorithm for Poisson’s equation. SIAM J. Numer. Anal. 33(3), 1106–1124 (1996)

    Article  MathSciNet  Google Scholar 

  12. Durán, R.G., Lombardi, A.L.: Finite element approximation of convection diffusion problems using graded meshes. Appl. Numer. Math. 56(10–11), 1314–1325 (2006)

    Article  MathSciNet  Google Scholar 

  13. Ekeland, I., Témam, R.: Convex analysis and variational problems, volume 28 of Classics in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, english edition, (1999). Translated from the French

  14. Ern, A., Guermond, J.-L.: Theory and Practice of Finite Elements: Applied Mathematical Sciences, vol. 159. Springer, New York (2004)

    Google Scholar 

  15. Kopteva, N.: Maximum norm a posteriori error estimate for a 2D singularly perturbed semilinear reaction–diffusion problem. SIAM J. Numer. Anal. 46(3), 1602–1618 (2008)

    Article  MathSciNet  Google Scholar 

  16. Kopteva, N.: Maximum-norm a posteriori error estimates for singularly perturbed reaction–diffusion problems on anisotropic meshes. SIAM J. Numer. Anal. 53(6), 2519–2544 (2015)

    Article  MathSciNet  Google Scholar 

  17. Kunert, G.: A posterior \(H^1\) error estimation for a singularly perturbed reaction diffusion problem on anisotropic meshes. IMA J. Numer. Anal. 25(2), 408–428 (2005)

    Article  MathSciNet  Google Scholar 

  18. Prager, W., Synge, J.L.: Approximations in elasticity based on the concept of function space. Quart. Appl. Math. 5, 241–269 (1947)

    Article  MathSciNet  Google Scholar 

  19. Repin, S., Sauter, S., Smolianski, A.: Two-sided a posteriori error estimates for mixed formulations of elliptic problems. SIAM J. Numer. Anal. 45(3), 928–945 (2007)

    Article  MathSciNet  Google Scholar 

  20. Roos, H.-G., Stynes, M.: Some open questions in the numerical analysis of singularly perturbed differential equations. Comput. Methods Appl. Math. 15(4), 531–550 (2015)

    Article  MathSciNet  Google Scholar 

  21. Scott, L.R., Zhang, S.: Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comp. 54(190), 483–493 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  22. Smears, I., Vohralík, M.: Simple and robust equilibrated flux a posteriori estimates for singularly perturbed reaction–diffusion problems. ESAIM Math. Model. Numer. Anal. 54(6), 1951–1973 (2020)

    Article  MathSciNet  Google Scholar 

  23. Strang, G., Fix, G.J.: An Analysis of the Finite Element Method. Prentice-Hall Series in Automatic Computation. Prentice-Hall Inc, Englewood Cliffs (1973)

    Google Scholar 

  24. Verfürth, R.: Robust a posteriori error estimators for a singularly perturbed reaction–diffusion equation. Numer. Math. 78(3), 479–493 (1998)

    Article  MathSciNet  Google Scholar 

  25. Vohralík, M.: Unified primal formulation-based a priori and a posteriori error analysis of mixed finite element methods. Math. Comp. 79(272), 2001–2032 (2010)

    Article  MathSciNet  Google Scholar 

  26. Zhang, B., Chen, S., Zhao, J.: A posteriori error estimation based on conservative flux reconstruction for nonconforming finite element approximations to a singularly perturbed reaction–diffusion problem on anisotropic meshes. Appl. Math. Comput. 232, 1062–1075 (2014)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the anonymous referee for his/her careful reading and helpful suggestions to improve the presentation of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Stynes.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Communicated by Rolf Stenberg.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

JaEun Ku’s research is supported by NSF Grant DMS-2208289. The work of Martin Stynes is supported in part by the National Natural Science Foundation of China under Grants 12171025 and NSAF-U2230402.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ku, J., Stynes, M. A posteriori error estimates for a dual finite element method for singularly perturbed reaction–diffusion problems. Bit Numer Math 64, 7 (2024). https://doi.org/10.1007/s10543-024-01008-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10543-024-01008-x

Keywords

Mathematics Subject Classification

Navigation