Skip to main content
Log in

New structure-preserving mixed finite element method for the stationary MHD equations with magnetic-current formulation

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we propose and analyze a new structure-preserving finite element method for the stationary magnetohydrodynamic equations with magnetic-current formulation on Lipschitz domains. Using a mixed finite element approach, we discretize the hydrodynamic unknowns by inf-sup stable velocity-pressure finite element pairs, and the current density, the induced electric field and the magnetic field by using the edge-edge-face elements from a discrete de-Rham complex pair. To deal with the divergence-free condition of the magnetic field, we introduce an augmented term to the discrete scheme rather than a Lagrange multiplier in the existing schemes. Thanks to discrete differential forms and finite element exterior calculus, the proposed scheme preserves the divergence-free property exactly for the magnetic induction on the discrete level. The well-posedness of the discrete problem is further proved under the small data condition. Under weak regularity assumptions, we rigorously establish the error estimates of the finite element schemes. Numerical results are provided to illustrate the theoretical results and demonstrate the efficiency of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and materials

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Adler, J.H., Benson, T.R., Cyr, E.C., Farrell, P.E., MacLachlan, S.P., Tuminaro, R.S.: Monolithic multigrid methods for magnetohydrodynamics. SIAM J. Sci. Comput. 43(5), S70–S91 (2021)

    Article  MathSciNet  Google Scholar 

  2. Ata, K., Sahin, M.: A facebased monolithic approach for the incompressible magnetohydrodynamics equations. Int. J. Numer. Methods Fluids 92(5), 347–371 (2020)

    Article  Google Scholar 

  3. Boffi, D., Brezzi, F., Fortin, M.: Mixed finite element methods and applications. Springer Series in Computational Mathematics, vol. 44. Springer, Heidelberg (2013)

    Google Scholar 

  4. Brackbill, J.U., Barnes, D.C.: The effect of nonzero \(\nabla \cdot {{\varvec {B}}}\) on the numerical solution of the magnetohydrodynamic equations. J. Comput. Phys. 35(3), 426–430 (1980)

    Article  MathSciNet  Google Scholar 

  5. Dai, W., Woodward, P.R.: On the divergence-free condition and conservation laws in numerical simulations for supersonic magnetohydrodynamic flows. Astrophys. J. 494(1), 317 (1998)

    Article  Google Scholar 

  6. Davidson, P.A.: An introduction to magnetohydrodynamics. Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge (2001)

    Book  Google Scholar 

  7. Gao, H., Qiu, W.: A semi-implicit energy conserving finite element method for the dynamical incompressible magnetohydrodynamics equations. Comput. Methods Appl. Mech. Eng. 346, 982–1001 (2019)

    Article  MathSciNet  Google Scholar 

  8. Gerbeau, J.F., Le Bris, C., Lelièvre, T.: Mathematical methods for the magnetohydrodynamics of liquid metals. Numerical Mathematics and Scientific Computation, Oxford University Press, Oxford (2006)

    Book  Google Scholar 

  9. Girault, V., Raviart, P.A.: Finite element methods for Navier-Stokes equations, Springer Series in Computational Mathematics, vol. 5. Springer-Verlag, Berlin (1986). Theory and algorithms

  10. Goedbloed, J.P., Keppens, R., Poedts, S.: Advanced Magnetohydrodynamics: With Applications to Laboratory and Astrophysical Plasmas. Cambridge University Press, Cambridge (2010)

    Book  Google Scholar 

  11. Goedbloed, J.P.H., Poedts, S.: Principles of Magnetohydrodynamics: With Applications to Laboratory and Astrophysical Plasmas. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  12. Gunzburger, M.D., Meir, A.J., Peterson, J.S.: On the existence, uniqueness, and finite element approximation of solutions of the equations of stationary, incompressible magnetohydrodynamics. Math. Comput. 56(194), 523–563 (1991)

    Article  MathSciNet  Google Scholar 

  13. He, Y.: Unconditional convergence of the Euler semi-implicit scheme for the three-dimensional incompressible MHD equations. IMA J. Numer. Anal. 35(2), 767–801 (2015)

    Article  MathSciNet  Google Scholar 

  14. Hecht, F.: New development in FreeFem++. J. Numer. Math. 20(3–4), 251–265 (2012)

    MathSciNet  Google Scholar 

  15. Hiptmair, R., Li, L., Mao, S., Zheng, W.: A fully divergence-free finite element method for magnetohydrodynamic equations. Math. Models Methods Appl. Sci. 28(4), 659–695 (2018)

    Article  MathSciNet  Google Scholar 

  16. Hu, K., Ma, Y., Xu, J.: Stable finite element methods preserving \(\nabla \cdot {\varvec {B}}=0\) exactly for MHD models. Numer. Math. 135(2), 371–396 (2017)

    Article  MathSciNet  Google Scholar 

  17. Hu, K., Xu, J.: Stable magnetic field-current finite element formulation for magnetohydrodynamics system (in Chinese). Sci. Sin. Math. 46(7), 967–980 (2016)

    Google Scholar 

  18. Hu, K., Xu, J.: Structure-preserving finite element methods for stationary MHD models. Math. Comput. 88(316), 553–581 (2019)

    Article  MathSciNet  Google Scholar 

  19. John, V.: Finite element methods for incompressible flow problems. Springer Series in Computational Mathematics, vol. 51. Springer, Cham (2016)

    Google Scholar 

  20. Laakmann, F., Farrell, P.E., Mitchell, L.: An augmented Lagrangian preconditioner for the magnetohydrodynamics equations at high Reynolds and coupling numbers. SIAM J. Sci. Comput. 44(4), B1018–B1044 (2022)

    Article  MathSciNet  Google Scholar 

  21. Li, L., Zhang, D., Zheng, W.: A constrained transport divergence-free finite element method for incompressible MHD equations. J. Comput. Phys. 428(109980), 22 (2021)

    MathSciNet  Google Scholar 

  22. Li, X., Li, L.: A conservative finite element solver for the induction equation of resistive MHD: vector potential method and constraint preconditioning. J. Comput. Phys. 466(111416), 20 (2022)

    MathSciNet  Google Scholar 

  23. Ma, Y., Xu, J., Zhang, G.D.: Error estimates for structure-preserving discretization of the incompressible MHD system. arXiv: arXiv1608.03034 (2016)

  24. Marioni, L., Bay, F., Hachem, E.: Numerical stability analysis and flow simulation of lid-driven cavity subjected to high magnetic field. Phys. Fluids 28, 057102 (2016)

    Article  Google Scholar 

  25. Phillips, E.G., Elman, H.C., Cyr, E.C., Shadid, J.N., Pawlowski, R.P.: A block preconditioner for an exact penalty formulation for stationary MHD. SIAM J. Sci. Comput. 36(6), B930–B951 (2014)

    Article  MathSciNet  Google Scholar 

  26. Prohl, A.: Convergent finite element discretizations of the nonstationary incompressible magnetohydrodynamics system. M2AN Math. Model. Numer. Anal. 42(6), 1065–1087 (2008)

    Article  MathSciNet  Google Scholar 

  27. Qiu, W., Shi, K.: Analysis of a semi-implicit structure-preserving finite element method for the nonstationary incompressible magnetohydrodynamics equations. Comput. Math. Appl. 80(10), 2150–2161 (2020)

    Article  MathSciNet  Google Scholar 

  28. Schötzau, D.: Mixed finite element methods for stationary incompressible magneto-hydrodynamics. Numer. Math. 96(4), 771–800 (2004)

    Article  MathSciNet  Google Scholar 

  29. Su, H., Feng, X., Huang, P.: Iterative methods in penalty finite element discretization for the steady MHD equations. Comput. Methods Appl. Mech. Eng. 304, 521–545 (2016)

    Article  MathSciNet  Google Scholar 

  30. Tóth, G.: The \(\nabla \cdot {\varvec {B}}=0\) constraint in shock-capturing magnetohydrodynamics codes. J. Comput. Phys. 161(2), 605–652 (2000)

    Article  MathSciNet  Google Scholar 

  31. Yang, J., Mao, S.: Second order fully decoupled and unconditionally energy-stable finite element algorithm for the incompressible MHD equations. Appl. Math. Lett. 121(107467), 8 (2021)

    MathSciNet  Google Scholar 

  32. Zhang, G., He, Y., Yang, D.: Analysis of coupling iterations based on the finite element method for stationary magnetohydrodynamics on a general domain. Comput. Math. Appl. 68(7), 770–788 (2014)

    Article  MathSciNet  Google Scholar 

  33. Zhang, G., Yang, J., Bi, C.: Second order unconditionally convergent and energy stable linearized scheme for MHD equations. Adv. Comput. Math. 44(2), 505–540 (2018)

  34. Zhang, X., Ding, Q.: Coupled iterative analysis for stationary inductionless magnetohydrodynamic system based on charge-conservative finite element method. J. Sci. Comput. 88(2), 32 (2021)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the anonymous referees and the associate editor for many constructive comments that improved the paper.

Funding

The first author’s research is supported in part by the National Natural Science Foundation of China under Grant 12201575 and China Postdoctoral Science Foundation under Grant 2022M722878. The second author’s research is supported in part by Xinjiang Graduate Student Research Innovation Project under Grant XJ2023G081.

Author information

Authors and Affiliations

Authors

Contributions

XZ: conceptualization, methodology, formal analysis, writing, review. SD: visualization, validation, review. All authors reviewed the manuscript.

Corresponding author

Correspondence to Xiaodi Zhang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Dong, S. New structure-preserving mixed finite element method for the stationary MHD equations with magnetic-current formulation. Bit Numer Math 63, 55 (2023). https://doi.org/10.1007/s10543-023-00995-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10543-023-00995-7

Keywords

Mathematics Subject Classification

Navigation