Skip to main content
Log in

Stability and convergence of the variable-step time filtered backward Euler scheme for parabolic equations

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

This work is concerned with numerical analysis of the variable-step time filtered backward Euler scheme (see e.g. DeCaria in SIAM J Sci Comput 43(3):A2130–A2160, 2021) for linear parabolic equations. To this end, we build up a discrete gradient structure of the associated one-leg multi-step scheme of the time filtered backward Euler (FiBE) scheme, and establish the discrete energy dissipation law for the dissipative case. Furthermore, upon developing the discrete energy technique with two new classes of discrete orthogonal convolution kernels, we present the rigorous stability and convergence results for the variable-step FiBE scheme in the \(L^2\) norm under a practical step-ratio constraint \(1/2\le \tau _k/\tau _{k-1}\le 2\) for \(k\ge 2,\) where \(\tau _k\) is the associated discrete time step. This seems to be the first energy stability and \(L^2\) norm error estimate for the variable-step time filtered stiff solver. We also present numerical tests to support the theoretical findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Becker, J.: A second order backward difference method with variable steps for a parabolic problem. BIT 38(4), 644–662 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  2. Besier, M., Rannacher, R.: Goal-oriented space-time adaptivity in the finite element Galerkin method for the computation of nonstationary incompressible flow. Internat. J. Numer. Methods Fluids 70, 1139–1166 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Calvo, M., Grande, T., Grigorieff, R.D.: On the zero stability of the variable order variable stepsize BDF-formulas. Numer. Math. 57, 39–50 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chen, W., Wang, X., Yan, Y., Zhang, Z.: A second order BDF numerical scheme with variable steps for the Cahn-Hilliard equation. SIAM J. Numer. Anal. 57(1), 495–525 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dahlquist, G., Liniger, W., Nevanlinna, O.: Stability of two step methods for variable integration steps. SIAM J. Numer. Anal. 20, 1071–1085 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  6. DeCaria, V., Layton, W., Zhao, H.: A time-accurate, adaptive discretization for fluid flow problems. Int. J. Numer. Anal. Model. 17, 254–280 (2020)

    MathSciNet  MATH  Google Scholar 

  7. DeCaria, V., Gottlieb, S., Grant, Z.J., Layton, W.: A general linear method approach to the design and optimization of efficient, accurate, and easily implemented time-stepping methods in CFD. J. Comput. Phys. 455, 110927 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  8. DeCaria, V., Guzel, A., Layton, W., Li, Y.: A variable stepsize, variable order family of low complexity. SIAM J. Sci. Comput. 43(3), A2130–A2160 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  9. DeCaria, V., Schneier, M.: An embedded variable step IMEX scheme for the incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Engrg. 376, 113661 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  10. Guzel, A., Layton, W.: Time filters increase accuracy of the fully implicit method. BIT 58, 1–15 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kang, Y., Liao, H.-L.: Energy stability of BDF methods up to fifth-order for the molecular beam epitaxial model without slope selection. J. Sci. Comput. 91, 47 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  12. Layton, W., Pei, W., Qin, Y., Trenchea, C.: Analysis of the variable step method of Dahlquist, Liniger and Nevanlinna for fluid flow. Numer. Methods Partial Diff. Equ. (2021). https://doi.org/10.1002/num.22831

    Article  Google Scholar 

  13. Li, Z., Liao, H.-L.: Stability of variable-step BDF2 and BDF3 methods. SIAM J. Numer. Anal. 60(4), 2253–2272 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  14. Liao, H.-L., Ji, B., Wang, L., Zhang, Z.: Mesh-robustness of an energy stable BDF2 scheme with variable steps for the Cahn-Hilliard model. J. Sci. Comput. 92, 52 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  15. Liao, H.-L., Ji, B., Zhang, L.: An adaptive BDF2 implicit time-stepping method for the phase field crystal model. IMA J. Numer. Anal. 42(1), 649–679 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  16. Liao, H.-L., Tang, T., Zhou, T.: On energy stable, maximum-bound preserving, second-order BDF scheme with variable steps for the Allen-Cahn equation. SIAM J. Numer. Anal. 58(4), 2294–2314 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  17. Liao, H.-L., Tang, T., Zhou, T.: A new discrete energy technique for multi-step backward difference formulas. CSIAM Trans. Appl. Math. 3(2), 318–334 (2022)

    Article  MathSciNet  Google Scholar 

  18. Liao, H.-L., Tang, T., Zhou, T.: Discrete energy technique of the third-order variable-step BDF time-stepping for diffusion equations. J. Comput. Math. (2022). https://doi.org/10.4208/jcm.2207-m2022-0020

    Article  MATH  Google Scholar 

  19. Liao, H.-L., Zhang, Z.: Analysis of adaptive BDF2 scheme for diffusion equations. Math. Comp. 90, 1207–1226 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  20. Wang, J., Liao, H.-L., Zhao, Y.: An energy stable filtered backward Euler scheme for the MBE equation with slope selection. Numer. Math. Theor. Method Appl. 16(1), 165–181 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  21. Williams, P.D.: A The RAW filter: an improvement to the Robert-Asselin filter in semi-implicit integrations. Mon. Weather Rev. 139, 1996–2007 (2011)

    Article  Google Scholar 

  22. Williams, P.D.: Achieving seventh-order amplitude accuracy in leap-frog integrations. Mon. Weather Rev. 141, 3037–3051 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Jiexin Wang for her help on extensive numerical tests.

Funding

This work is supported by NSF of China under Grant Numbers 12071216, 11731006, 12288201 and NNW2018-ZT4A06 project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-lin Liao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Antonella Zanna Munthe-Kaas.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, Hl., Tang, T. & Zhou, T. Stability and convergence of the variable-step time filtered backward Euler scheme for parabolic equations. Bit Numer Math 63, 39 (2023). https://doi.org/10.1007/s10543-023-00982-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10543-023-00982-y

Keywords

Mathematics Subject Classification

Navigation