Skip to main content
Log in

Convergence of trigonometric and finite-difference discretization schemes for FFT-based computational micromechanics

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

This paper studies the convergences of several FFT-based discretization schemes that are widely applied in computational micromechanics for deriving effective coefficients, and “convergence” here means the limiting behaviors as spatial resolutions tending to infinity. Those schemes include Moulinec–Suquet’s scheme, Willot’s scheme and the FEM scheme. Under some reasonable assumptions, we prove that the effective coefficients obtained by those schemes all converge to the theoretical ones. Moreover, for the FEM scheme, we can present several convergence rate estimates under additional regularity assumptions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abdulle, A., Arjmand, D., Paganoni, E.: Exponential decay of the resonance error in numerical homogenization via parabolic and elliptic cell problems. C. R. Math. Acad. des Sci. 357(6), 545–551 (2019). https://doi.org/10.1016/j.crma.2019.05.011

    Article  MathSciNet  MATH  Google Scholar 

  2. Balay, S., Abhyankar, S., Adams, M.F., Benson, S., Brown, J., Brune, P., Buschelman, K., Constantinescu, E.M., Dalcin, L., Dener, A., Eijkhout, V., Faibussowitsch, J., Gropp, W.D., Hapla, V., Isaac, T., Jolivet, P., Karpeev, D., Kaushik, D., Knepley, M.G., Kong, F., Kruger, S., May, D.A., McInnes, L.C., Mills, R.T., Mitchell, L., Munson, T., Roman, J.E., Rupp, K., Sanan, P., Sarich, J., Smith, B.F., Zampini, S., Zhang, H., Zhang, H., Zhang, J.: PETSc Web page. https://petsc.org/ (2022)

  3. Berbenni, S., Taupin, V., Djaka, K.S., Fressengeas, C.: A numerical spectral approach for solving elasto-static field dislocation and g-disclination mechanics. Int. J. Solids Struct. 51(23–24), 4157–4175 (2014). https://doi.org/10.1016/j.ijsolstr.2014.08.009

    Article  Google Scholar 

  4. Bernardi, C., Girault, V.: A local regularization operator for triangular and quadrilateral finite elements. SIAM J. Numer. Anal. 35(5), 1893–1916 (1998). https://doi.org/10.1137/S0036142995293766

    Article  MathSciNet  MATH  Google Scholar 

  5. Brenner, R.: Numerical computation of the response of piezoelectric composites using Fourier transform. Phys. Rev. B 79, 184106 (2009). https://doi.org/10.1103/PhysRevB.79.184106

    Article  Google Scholar 

  6. Brenner, S.C., Scott, L.R.: The mathematical theory of finite element methods. In: Texts in Applied Mathematics, vol. 15, 3rd edn. Springer, New York (2008). https://doi.org/10.1007/978-0-387-75934-0

  7. Brisard, S., Dormieux, L.: FFT-based methods for the mechanics of composites: a general variational framework. Comput. Mater. Sci. 49(3), 663–671 (2010). https://doi.org/10.1016/j.commatsci.2010.06.009

    Article  Google Scholar 

  8. Brisard, S., Dormieux, L.: Combining Galerkin approximation techniques with the principle of Hashin and Shtrikman to derive a new FFT-based numerical method for the homogenization of composites. Comput. Methods Appl. Mech. Eng. 217(220), 197–212 (2012). https://doi.org/10.1016/j.cma.2012.01.003

    Article  MathSciNet  MATH  Google Scholar 

  9. Burman, E., Claus, S., Hansbo, P., Larson, M.G., Massing, A.: CutFEM: discretizing geometry and partial differential equations. Int. J. Numer. Methods Eng. 104(7), 472–501 (2014). https://doi.org/10.1002/nme.4823

    Article  MathSciNet  MATH  Google Scholar 

  10. Caiazzo, A., Maier, R., Peterseim, D.: Reconstruction of quasi-local numerical effective models from low-resolution measurements. J. Sci. Comput. 85(1), 23 (2020). https://doi.org/10.1007/s10915-020-01304-y

    Article  MathSciNet  MATH  Google Scholar 

  11. Chai, Y., Wang, Y., Yousaf, Z., Vo, N.T., Lowe, T., Potluri, P., Withers, P.J.: Damage evolution in braided composite tubes under torsion studied by in-situ X-ray computed tomography. Compos. Sci. Technol. 188, 107976 (2020). https://doi.org/10.1016/j.compscitech.2019.107976

    Article  Google Scholar 

  12. Chen, Z., Li, K., Xiang, X.: An adaptive high-order unfitted finite element method for elliptic interface problems. Numer. Math. 149(3), 507–548 (2021). https://doi.org/10.1007/s00211-021-01243-2

    Article  MathSciNet  MATH  Google Scholar 

  13. Chen, Z., Xiao, Y., Zhang, L.: The adaptive immersed interface finite element method for elliptic and Maxwell interface problems. J. Comput. Phys. 228(14), 5000–5019 (2009). https://doi.org/10.1016/j.jcp.2009.03.044

    Article  MathSciNet  MATH  Google Scholar 

  14. Chung, E., Efendiev, Y., Hou, T.Y.: Adaptive multiscale model reduction with generalized multiscale finite element methods. J. Comput. Phys. 320, 69–95 (2016). https://doi.org/10.1016/j.jcp.2016.04.054

    Article  MathSciNet  MATH  Google Scholar 

  15. Chung, E.T., Efendiev, Y., Leung, W.T.: Constraint energy minimizing generalized multiscale finite element method. Comput. Methods Appl. Mech. Eng. 339, 298–319 (2018). https://doi.org/10.1016/j.cma.2018.04.010

    Article  MathSciNet  MATH  Google Scholar 

  16. Chung, E.T., Efendiev, Y., Leung, W.T., Vasilyeva, M.: Nonlocal multicontinua with representative volume elements. Bridging separable and non-separable scales. Comput. Methods Appl. Mech. Eng. 377, Paper No. 113687, 19 (2021). https://doi.org/10.1016/j.cma.2021.113687

  17. Ciarlet, P.G.: Basic error estimates for elliptic problems. In: Handbook of Numerical Analysis, Vol. 2, pp. 17–351. North-Holland, Amsterdam (1991)

  18. Cioranescu, D., Donato, P.: An Introduction to Homogenization. Oxford Lecture Series in Mathematics and Its Applications, vol. 17. The Clarendon Press, Oxford University Press, New York (1999)

    MATH  Google Scholar 

  19. Conway, J.B.: A course in functional analysis. In: Graduate Texts in Mathematics, Vol. 96, 2nd edn. Springer, New York (1990)

  20. Duff, I.S., Heroux, M.A., Pozo, R.: An overview of the sparse basic linear algebra subprograms: the new standard from the BLAS Technical Forum. Association for Computing Machinery. Trans. Math. Softw. 28(2), 239–267 (2002). https://doi.org/10.1145/567806.567810

    Article  MATH  Google Scholar 

  21. Efendiev, Y., Galvis, J., Hou, T.Y.: Generalized multiscale finite element methods (GMsFEM). J. Comput. Phys. 251, 116–135 (2013). https://doi.org/10.1016/j.jcp.2013.04.045

    Article  MathSciNet  MATH  Google Scholar 

  22. Eyre, D.J., Milton, G.W.: A fast numerical scheme for computing the response of composites using grid refinement. Eur. Phys. J. Appl. Phys. 6(1), 41–47 (1999). https://doi.org/10.1051/epjap:1999150

    Article  Google Scholar 

  23. Frigo, M., Johnson, S.G.: The design and implementation of FFTW3. Proc. IEEE 93(2), 216–231 (2005). https://doi.org/10.1109/jproc.2004.840301

    Article  Google Scholar 

  24. Hashin, Z., Shtrikman, S.: On some variational principles in anisotropic and nonhomogeneous elasticity. J. Mech. Phys. Solids 10(4), 335–342 (1962). https://doi.org/10.1016/0022-5096(62)90004-2

    Article  MathSciNet  MATH  Google Scholar 

  25. Hazanov, S.: Hill condition and overall properties of composites. Arch. Appl. Mech. (Ingenieur Archiv) 68(6), 385–394 (1998). https://doi.org/10.1007/s004190050173

    Article  MATH  Google Scholar 

  26. Henning, P., Målqvist, A.: Localized orthogonal decomposition techniques for boundary value problems. SIAM J. Sci. Comput. 36(4), 1609–1634 (2014). https://doi.org/10.1137/130933198

    Article  MathSciNet  MATH  Google Scholar 

  27. Huang, P., Wu, H., Xiao, Y.: An unfitted interface penalty finite element method for elliptic interface problems. Comput. Methods Appl. Mech. Eng. 323, 439–460 (2017). https://doi.org/10.1016/j.cma.2017.06.004

    Article  MathSciNet  MATH  Google Scholar 

  28. Hughes, T.J.R., Cottrell, J.A., Bazilevs, Y.: Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput. Methods Appl. Mech. Eng. 194(39–41), 4135–4195 (2005). https://doi.org/10.1016/j.cma.2004.10.008

    Article  MathSciNet  MATH  Google Scholar 

  29. Kanit, T., N’Guyen, F., Forest, S., Jeulin, D., Reed, M., Singleton, S.: Apparent and effective physical properties of heterogeneous materials: representativity of samples of two materials from food industry. Comput. Methods Appl. Mech. Eng. 195(33–36), 3960–3982 (2006). https://doi.org/10.1016/j.cma.2005.07.022

    Article  MATH  Google Scholar 

  30. Koh, B.C., Kikuchi, N.: New improved hourglass control for bilinear and trilinear elements in anisotropic linear elasticity. Comput. Methods Appl. Mech. Eng. 65(1), 1–46 (1987). https://doi.org/10.1016/0045-7825(87)90181-2

    Article  MathSciNet  MATH  Google Scholar 

  31. Landis, E.N., Keane, D.T.: X-ray microtomography. Mater. Charact. 61(12), 1305–1316 (2010). https://doi.org/10.1016/j.matchar.2010.09.012

    Article  Google Scholar 

  32. Larson, B.C., Yang, W., Ice, G.E., Budai, J.D., Tischler, J.Z.: Three-dimensional X-ray structural microscopy with submicrometre resolution. Nature 415(6874), 887–890 (2002). https://doi.org/10.1038/415887a

    Article  Google Scholar 

  33. Lebensohn, R.A., Needleman, A.: Numerical implementation of non-local polycrystal plasticity using fast Fourier transforms. J. Mech. Phys. Solids 97, 333–351 (2016). https://doi.org/10.1016/j.jmps.2016.03.023

    Article  MathSciNet  Google Scholar 

  34. Li, Y., Nirenberg, L.: Estimates for elliptic systems from composite material. Commun. Pure Appl. Math. 56(7), 892–925 (2003). https://doi.org/10.1002/cpa.10079

    Article  MathSciNet  MATH  Google Scholar 

  35. Li, Z., Lin, T., Wu, X.: New Cartesian grid methods for interface problems using the finite element formulation. Numer. Math. 96(1), 61–98 (2003). https://doi.org/10.1007/s00211-003-0473-x

    Article  MathSciNet  MATH  Google Scholar 

  36. Lippmann, B.A., Schwinger, J.: Variational principles for scattering processes. I. Phys. Rev. Ser. II(79), 469–480 (1950)

    MathSciNet  MATH  Google Scholar 

  37. Målqvist, A., Peterseim, D.: Localization of elliptic multiscale problems. Math. Comput. 83(290), 2583–2603 (2014). https://doi.org/10.1090/S0025-5718-2014-02868-8

    Article  MathSciNet  MATH  Google Scholar 

  38. Må lqvist, A., Peterseim, D.: Numerical homogenization by localized orthogonal decomposition. In: SIAM Spotlights, Vol. 5. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2021)

  39. Matouš, K., Geers, M.G.D., Kouznetsova, V.G., Gillman, A.: A review of predictive nonlinear theories for multiscale modeling of heterogeneous materials. J. Comput. Phys. 330, 192–220 (2017). https://doi.org/10.1016/j.jcp.2016.10.070

    Article  MathSciNet  Google Scholar 

  40. Michel, J.C., Moulinec, H., Suquet, P.: A computational scheme for linear and non-linear composites with arbitrary phase contrast. Int. J. Numer. Methods Eng. 52(12), 139–160 (2001). https://doi.org/10.1002/nme.275

    Article  Google Scholar 

  41. Milton, G.W.: The theory of composites. In: Cambridge Monographs on Applied and Computational Mathematics, Vol. 6. Cambridge University Press, Cambridge (2002). https://doi.org/10.1017/CBO9780511613357

  42. Moulinec, H., Suquet, P.: A FFT-based numerical method for computing the mechanical properties of composites from images of their microstructures. In: Pyrz, R. (ed.) IUTAM Symposium on Microstructure-Property Interactions in Composite Materials, pp. 235–246. Springer, Dordrecht (1995)

  43. Moulinec, H., Suquet, P.: A numerical method for computing the overall response of nonlinear composites with complex microstructure. Comput. Methods Appl. Mech. Eng. 157(1–2), 69–94 (1998). https://doi.org/10.1016/S0045-7825(97)00218-1

    Article  MathSciNet  MATH  Google Scholar 

  44. Pekurovsky, D.: P3DFFT: a framework for parallel computations of Fourier transforms in three dimensions. SIAM J. Sci. Comput. 34(4), C192–C209 (2012). https://doi.org/10.1137/11082748X

    Article  MathSciNet  MATH  Google Scholar 

  45. Poulsen, H.: Three-Dimensional X-ray Diffraction Microscopy. Springer, Berlin (2004). https://doi.org/10.1007/b97884

    Book  Google Scholar 

  46. Pugh, E.D.L., Hinton, E., Zienkiewicz, O.C.: A study of quadrilateral plate bending elements with ‘reduced’ integration. Int. J. Numer. Methods Eng. 12(7), 1059–1079 (1978). https://doi.org/10.1002/nme.1620120702

    Article  MATH  Google Scholar 

  47. Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd edn. Society for Industrial and Applied Mathematics, Philadelphia (2003). https://doi.org/10.1137/1.9780898718003

    Book  MATH  Google Scholar 

  48. Saad, Y., Schultz, M.H.: GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. Society for Industrial and Applied Mathematics. Journal on Scientific and Statistical Computing 7(3), 856–869 (1986). https://doi.org/10.1137/0907058

  49. Schneider, M.: Convergence of FFT-based homogenization for strongly heterogeneous media. Math. Methods Appl. Sci. 38(13), 2761–2778 (2015). https://doi.org/10.1002/mma.3259

    Article  MathSciNet  MATH  Google Scholar 

  50. Schneider, M.: A dynamical view of nonlinear conjugate gradient methods with applications to FFT-based computational micromechanics. Comput. Mech. 66(1), 239–257 (2020). https://doi.org/10.1007/s00466-020-01849-7

    Article  MathSciNet  MATH  Google Scholar 

  51. Schneider, M.: A review of nonlinear FFT-based computational homogenization methods. Acta Mech. 232(6), 2051–2100 (2021). https://doi.org/10.1007/s00707-021-02962-1

    Article  MathSciNet  MATH  Google Scholar 

  52. Schneider, M., Merkert, D., Kabel, M.: FFT-based homogenization for microstructures discretized by linear hexahedral elements. Int. J. Numer. Methods Eng. 109(10), 1461–1489 (2017). https://doi.org/10.1002/nme.5336

    Article  MathSciNet  MATH  Google Scholar 

  53. Schneider, M., Ospald, F., Kabel, M.: Computational homogenization of elasticity on a staggered grid. Int. J. Numer. Methods Eng. 105(9), 693–720 (2016). https://doi.org/10.1002/nme.5008

    Article  MathSciNet  MATH  Google Scholar 

  54. Segurado, J., Lebensohn, R.A., LLorca, J.: Chapter one-computational homogenization of polycrystals. In: M.I. Hussein (ed.) Advances in Crystals and Elastic Metamaterials, Part 1, Advances in Applied Mechanics, Vol. 51, pp. 1–114. Elsevier (2018). https://doi.org/10.1016/bs.aams.2018.07.001

  55. Vidyasagar, A., Tan, W.L., Kochmann, D.M.: Predicting the effective response of bulk polycrystalline ferroelectric ceramics via improved spectral phase field methods. J. Mech. Phys. Solids 106, 133–151 (2017). https://doi.org/10.1016/j.jmps.2017.05.017

    Article  MathSciNet  Google Scholar 

  56. Vidyasagar, A., Tutcuoglu, A.D., Kochmann, D.M.: Deformation patterning in finite-strain crystal plasticity by spectral homogenization with application to magnesium. Comput. Methods Appl. Mech. Eng. 335, 584–609 (2018). https://doi.org/10.1016/j.cma.2018.03.003

    Article  MathSciNet  MATH  Google Scholar 

  57. Vondřejc, J., Zeman, J., Marek, I.: An FFT-based Galerkin method for homogenization of periodic media. Comput. Math. Appl. Int. J. 68(3), 156–173 (2014). https://doi.org/10.1016/j.camwa.2014.05.014

    Article  MathSciNet  MATH  Google Scholar 

  58. Vondřejc, J., Zeman, J., Marek, I.: Guaranteed upper-lower bounds on homogenized properties by FFT-based Galerkin method. Comput. Methods Appl. Mech. Eng. 297, 258–291 (2015). https://doi.org/10.1016/j.cma.2015.09.003

    Article  MathSciNet  MATH  Google Scholar 

  59. Wang, M., Wang, J., Pan, N., Chen, S.: Mesoscopic predictions of the effective thermal conductivity for microscale random porous media. Phys. Rev. E 75(3), 036702 (2007). https://doi.org/10.1103/physreve.75.036702

    Article  Google Scholar 

  60. Willot, F.: Fourier-based schemes for computing the mechanical response of composites with accurate local fields. Comptes Rendus Mécanique 343(3), 232–245 (2015). https://doi.org/10.1016/j.crme.2014.12.005

    Article  MathSciNet  Google Scholar 

  61. Zeman, J., Vondřejc, J., Novák, J., Marek, I.: Accelerating a FFT-based solver for numerical homogenization of periodic media by conjugate gradients. J. Comput. Phys. 229(21), 8065–8071 (2010). https://doi.org/10.1016/j.jcp.2010.07.010

    Article  MathSciNet  MATH  Google Scholar 

  62. Zhu, Q.Z., Yvonnet, J.: An incremental-iterative method for modeling damage evolution in voxel-based microstructure models. Comput. Mech. 55(2), 371–382 (2015). https://doi.org/10.1007/s00466-014-1106-1

    Article  MathSciNet  MATH  Google Scholar 

  63. Zohdi, T.I., Wriggers, P.: An introduction to computational micromechanics. Lecture Notes in Applied and Computational Mechanics, Vol. 20. Springer, Berlin (2008)

  64. Zygmund, A.: Trigonometric Series, Vols. 1, 2. Cambridge University Press, London, New York (1968). Second edition, reprinted with corrections and some additions

Download references

Acknowledgements

The authors would like to thank the anonymous referees who provided useful and detailed comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changqing Ye.

Ethics declarations

Conflict of interest

The authors declared that they have no conflicts of interest to this work.

Additional information

Communicated by Axel Målqvis.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The research of Eric Chung is partially supported by the Hong Kong RGC General Research Fund (Project Nos. 14304719 and 14302620) and CUHK Faculty of Science Direct Grant 2020-21.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, C., Chung, E.T. Convergence of trigonometric and finite-difference discretization schemes for FFT-based computational micromechanics. Bit Numer Math 63, 11 (2023). https://doi.org/10.1007/s10543-023-00950-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10543-023-00950-6

Keywords

Mathematics Subject Classification

Navigation