Skip to main content
Log in

An efficient adaptive multigrid method for the elasticity eigenvalue problem

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

This paper aims to introduce a novel adaptive multigrid method for the elasticity eigenvalue problem. Different from the developing adaptive algorithms for the elasticity eigenvalue problem, the proposed approach transforms the elasticity eigenvalue problem into a series of boundary value problems in the adaptive spaces and some small-scale elasticity eigenvalue problems in a low-dimensional space. As our algorithm avoids solving large-scale elasticity eigenvalue problems, which is time-consuming, and the boundary value problem can be solved efficiently by the adaptive multigrid method, our algorithm can evidently improve the overall solving efficiency for the elasticity eigenvalue problem. Meanwhile, we present a rigorous theoretical analysis of the convergence and optimal complexity. Finally, some numerical experiments are presented to validate the theoretical conclusions and verify the numerical efficiency of our approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Babuška, I., Osborn, J.E.: Finite element-Galerkin approximation of the eigenvalues and eigenvectors of selfadjoint problems. Math. Comput. 52, 275–297 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  2. Babuška, I., Rheinboldt, W.C.: Error estimates for adaptive finite element computations. SIAM J. Numer. Anal. 15, 736–754 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  3. Babuška, I., Vogelius, M.: Feedback and adaptive finite element solution of one-dimensional boundary value problems. Numer. Math. 44, 75–102 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bai, D., Brandt, A.: Local mesh refinement multilevel techniques. SIAM J. Sci. Stat. Comput. 8, 109–134 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bastian, P., Lang, S., Eckstein, K.: Parallel adaptive multigrid methods in plane linear elasticity problems. Numer. Linear Algebra Appl. 4(3), 153–176 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bornemann, F., Deuflhard, P.: The cascadic multigrid method for elliptic problems. Numer. Math. 75, 135–152 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  7. Brandt, A.: Multi-level adaptive solutions to boundary-value problems. Math. Comput. 31, 333–390 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  8. Carstensen, C., Gedicke, J.: An adaptive finite element eigenvalue solver of asymptotic quasi-optimal computational complexity. SIAM J. Numer. Anal. 50(3), 1029–1057 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cascon, J.M., Kreuzer, C., Nochetto, R.H., Siebert, K.G.: Quasi-optimal convergence rate for an adaptive finite element method. SIAM J. Numer. Anal. 46, 2524–2550 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chatelin, F.: Spectral Approximations of Linear Operators. Academic Press, New York (1983)

    MATH  Google Scholar 

  11. Chen, H., He, Y., Li, Y., Xie, H.: A multigrid method for eigenvalue problems based on shifted-inverse power technique. Eur. J. Math. 1(1), 207–228 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chen, H., Xie, H., Xu, F.: A full multigrid method for eigenvalue problems. J. Comput. Phys. 322, 747–759 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chen, L., Nochetto, R., Xu, J.: Optimal multilevel methods for graded bisection grids. Numer. Math. 120, 1–34 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dai, X., Xu, J., Zhou, A.: Convergence and optimal complexity of adaptive finite element eigenvalue computations. Numer. Math. 110, 313–355 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. del Carmen-Domšnguez, M., Ferragut, L.: Adaptive multigrid method using duality in plane elasticity. Int. J. Numer. Methods Eng. 50(1), 95–118 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  16. Dello Russo, A.: Eigenvalue approximation by mixed non-conforming finite element methods: the determination of the vibrational modes of a linear elastic solid. Calcolo 51(4), 563–597 (2014)

    Article  MathSciNet  Google Scholar 

  17. Dörfler, W.: A convergent adaptive algorithm for Poisson’s equation. SIAM J. Numer. Anal. 33(3), 1106–1124 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  18. Durán, R.G., Padra, C., Rodrǵuez, R.: A posteriori error estimates for the finite element approximation of eigenvalue problems. Math. Models Methods Appl. Sci. 13, 1219–1229 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  19. Fichera, G.: Existence Theorems in Elasticity. Boundary Value Problems of Elasticity with Unilateral Constraints. Springer, Betlin (1972)

    Google Scholar 

  20. Garau, E.M., Morin, P., Zuppa, C.: Convergence of adaptive finite element methods for eigenvalue problems. Math. Models Methods Appl. Sci. 19(05), 721–747 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Giani, S., Graham, I.G.: A convergent adaptive method for elliptic eigenvalue problems. SIAM J. Numer. Anal. 47(2), 1067–1091 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Gong, B., Han, J., Sun, J., Zhang, Z.: A shifted-inverse adaptive multigrid method for the elastic eigenvalue problem. Commun. Comput. Phys. 27(1), 251–273 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hart, L., Mccormick, S., O’Gallagher, A., et al.: The fast adaptive composite-grid method (FAC): algorithms for advanced computers. Appl. Math. Comput. 19, 103–125 (1986)

    MATH  Google Scholar 

  24. He, L., Zhou, A.: Convergence and optimal complexity of adaptive finite element methods. Int. J. Numer. Anal. Model. 8, 615–640 (2011)

    MathSciNet  MATH  Google Scholar 

  25. Hernandez, E.: Finite element approximation of the elasticity spectral problem on curved domains. J. Comput. Appl. Math. 225(2), 452–458 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. Holst, M., Mccammom, J., Yu, Z., Zhou, Y., Zhu, Y.: Adaptive finite element modeling techniques for the Possion–Boltzmann equation. Commun. Comput. Phys. 11, 179–214 (2012)

    Article  MathSciNet  Google Scholar 

  27. Hong, Q., Xie, H., Xu, F.: A multilevel correction type of adaptive finite element method for eigenvalue problems. SIAM J. Sci. Comput. 40(6), A4208–A4235 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  28. Heuveline, V., Rannacher, R.: A posteriori error control for finite element approximations of ellipic eigenvalue problems. Adv. Comput. Math. 15, 107–138 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  29. Hu, X., Cheng, X.: Acceleration of a two-grid method for eigenvalue problems. Math. Comput. 80, 1287–1301 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  30. Jia, S., Xie, H., Xie, M., Xu, F.: A full multigrid method for nonlinear eigenvalue problems. Sci. China Math. 59, 2037–2048 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  31. Kornhuber, R., Krause, R.: Adaptive multigrid methods for Signorini’s problem in linear elasticity. Comput. Vis. Sci. 4(1), 9–20 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  32. Larson, M.G.: A posteriori and a priori error analysis for finite element approximations of self-adjoint elliptic eigenvalue problems. SIAM J. Numer. Anal. 38, 608–625 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  33. Lee, S., Kwak, D.Y., Sim, I.: Immersed finite element method for eigenvalue problems in elasticity. Adv. Appl. Math. Mech. 10(2), 424–444 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  34. Lin, Q., Xie, H.: A multi-level correction scheme for eigenvalue problems. Math. Comput. 84, 71–88 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  35. Lin, Q., Xie, H., Xu, F.: Multilevel correction adaptive finite element method for semilinear elliptic equation. Appl. Math. 60, 527–550 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  36. Lin, Q., Xie, H., Xu, J.: Lower bounds of the discretization for piecewise polynomials. Math. Comput. 83, 1–13 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  37. Liu, C., Xiao, Y., Shu, S., Zhong, L.: Adaptive finite element method and local multigrid method for elasticity problems. Eng. Mech. 29(9), 60–67 (2012)

    Google Scholar 

  38. Mao, D., Shen, L., Zhou, A.: Adaptive finite algorithms for eigenvalue problems based on local averaging type a posteriori error estimates. Adv. Comput. Math. 25, 135–160 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  39. Meddahi, S., Mora, D., Rodríguez, R.: Finite element spectral analysis for the mixed formulation of the elasticity equations. SIAM J. Numer. Anal. 51(2), 1041–1063 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  40. McCormick, S.: Fast adaptive composite grid (FAC) methods. In: Böhmer, K., Stetter, H.J. (eds.) Defect Correction Methods: Theory and Applications (Computing Supplementum, 5), pp. 115–121. Springer, Wien (1984)

    Chapter  Google Scholar 

  41. McCormick, S., Thomas, J.: The fast adaptive composite grid (FAC) method for elliptic equations. Math. Comput. 46, 439–456 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  42. Mehrmann, V., Miedlar, A.: Adaptive computation of smallest eigenvalues of self-adjoint elliptic partial differential equations. Numer. Linear Algebra Appl. 18(3), 387–409 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  43. Mekchay, K., Nochetto, R.H.: Convergence of adaptive finite element methods for general second order linear elliplic PDEs. SIAM J. Numer. Anal. 43, 1803–1827 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  44. Morin, P., Nochetto, R.H., Siebert, K.: Convergence of adaptive finite element methods. SIAM Rev. 44, 631–658 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  45. Nochetto, R.H.: Adaptive Finite Element Methods for Elliptic PDE. Lecture Notes of 2006 CNA Summer School, Carnegie Mellon University, Pittsburgh (2006)

    Google Scholar 

  46. Nochetto, R., Siebert, K., Veeser, A.: Theory of adaptive finite element methods: an introduction. In: DeVore, R.A., Kunoth, A. (eds.) Multiscale, Nonlinear and Adaptive Approximation. Springer, Berlin (2009)

    MATH  Google Scholar 

  47. Ovtchinnikov, E.E., Xanthis, L.S.: Effective dimensional reduction algorithm for eigenvalue problems for thin elastic structures: a paradigm in three dimensions. Proc. Natl. Acad. Sci. USA 97(3), 967–971 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  48. Stevenson, R.: Optimality of a standard adaptive finite element method. Found. Comput. Math. 7, 245–269 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  49. Trottenberg, U., Schuller, A.: Multigrid. Academic Press, Cambridge (2015)

    MATH  Google Scholar 

  50. Walsh, T.F., Reese, G.M., Hetmaniuk, U.L.: Explicit a posteriori error estimates for eigenvalue analysis of heterogeneous elastic structures. Comput. Methods Appl. Mech. Eng. 196(37–40), 3614–3623 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  51. Wu, H., Chen, Z.: Uniform convergence of multigrid V-cycle on adaptively refined finite element meshes for second order elliptic problems. Sci. China Ser. A 49, 1405–1429 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  52. Xie, H.: A multigrid method for eigenvalue problem. J. Comput. Phys. 274, 550–561 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  53. Xu, F., Huang, Q., Chen, S., Bing, T.: An adaptive multigrid method for semilinear elliptic equation. East Asian J. Appl. Math. 9, 683–702 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  54. Xu, J.: Iterative methods by space decomposition and subspace correction. SIAM Rev. 34(4), 581–613 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  55. Xu, J., Zhou, A.: A two-grid discretization scheme for eigenvalue problems. Math. Comput. 70, 17–25 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  56. Yang, Y., Bi, H., Han, J., Yu, Y.: The shifted-inverse iteration based on the multigrid discretizations for eigenvalue problems. SIAM J. Sci. Comput. 37, A2583–A2606 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  57. Zhang, N., Xu, F., Xie, H.: An efficient multigrid method for ground state solution of Bose–Einstein condensates. Int. J. Numer. Anal. Model. 16(5), 789–903 (2019)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank both referees for their valuable comments and helpful suggestions which improved this paper. The work of F. Xu was partially supported by NSFC 11801021. The work of Q. Huang was partially supported by NSFC 11971047. The work of M. Xie was partially supported by NSFC 12001402.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manting Xie.

Ethics declarations

Conflict of interest

The authors declared that they have no conflicts of interest to this work.

Additional information

Communicated by Marko Huhtanen.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, F., Huang, Q. & Xie, M. An efficient adaptive multigrid method for the elasticity eigenvalue problem. Bit Numer Math 62, 2005–2033 (2022). https://doi.org/10.1007/s10543-022-00939-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-022-00939-7

Keywords

Mathematics Subject Classification

Navigation