Skip to main content
Log in

A dimension expanded preconditioning technique for saddle point problems

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

A Publisher Correction to this article was published on 02 November 2022

This article has been updated

Abstract

In this paper, we present a new block preconditioner for solving the saddle point linear systems. The proposed method is developed from an augmented reformulation of the saddle point problem into a new linear system with an almost block triangular coefficient matrix. Theoretical results are derived on the eigenvalue distribution of the preconditioned matrix, and an efficient algorithmic implementation is developed and presented. Several numerical examples are reported to support the theoretical findings and to illustrate the favourable convergence properties of the proposed preconditioner, also compared to other popular solvers for saddle point problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Change history

References

  1. Alonso, R.A., Alberto, V.: Eddy Current Approximation of Maxwell Equations: Theory, Algorithms and Applications. Springer, Milan (2010)

    MATH  Google Scholar 

  2. Alonso, R.A., Ralf, H., Alberto, V.: A hybrid formulation of eddy current problems. Numer. Methods Partial Differ. Equ. 21(4), 742–763 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bai, Z.Z., Golub, G.H.: Accelerated Hermitian and skew-Hermitian splitting iteration methods for saddle-point problems. IMA J. Numer. Anal. 27(1), 1–23 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bai, Z.Z., Golub, G.H., Li, C.K.: Convergence properties of preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite matrices. Math. Comput. 76(257), 287–298 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bai, Z.Z., Golub, G.H., Ng, M.K.: Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems. SIAM J. Matrix Anal. Appl. 24(3), 603–626 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bai, Z.Z., Golub, G.H., Pan, J.Y.: Preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite linear systems. Numer. Math. 98(1), 1–32 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bai, Z.Z., Golub, G.H., Zhang, L.L., Yin, J.F.: Block triangular and skew-Hermitian splitting methods for positive definite linear systems. SIAM J. Sci. Comput. 26(3), 844–863 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Benzi, M., Golub, G.H.: A preconditioner for generalized saddle point problems. SIAM J. Matrix Anal. Appl. 26(1), 20–41 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. Benzi, M., Guo, X.P.: A dimensional split preconditioner for Stokes and linearized Navier–Stokes equations. Appl. Numer. Math. 61, 66–76 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Benzi, M., Ng, M., Niu, Q., Wang, Z.: A relaxed dimensional factorization preconditioner for the incompressible Navier–Stokes equations. J. Comput. Phys. 230(16), 6185–6202 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Betts, J.: Practical Methods for Optimal Control and Estimation Using Nonlinear Programming, 2nd edn. SIAM, Philadelphia (2010)

    Book  MATH  Google Scholar 

  12. Cao, Y., Dong, J.L., Wang, Y.M.: A relaxed deteriorated PSS preconditioner for nonsymmetric saddle point problems from the steady Navier–Stokes equation. J. Comput. Appl. Math. 273, 41–60 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cao, Y., Ren, Z.R., Shi, Q.: A simplified HSS preconditioner for generalized saddle point problems. BIT Numer. Math. 56(2), 423–439 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chan, L.C., Ng, M.K., Tsing, K.: Spectral analysis for HSS preconditioners. Numer. Math. Theor. Methods Appl. 1(1), 57–77 (2008)

    MathSciNet  MATH  Google Scholar 

  15. Chen, K.: Matrix Preconditioning Techniques and Applications. Cambridge University Press, Cambridge (2005)

    Book  MATH  Google Scholar 

  16. Chen, Z.: Finite Element Methods and Their Applications. Springer, Berlin (2005)

    MATH  Google Scholar 

  17. Davis, T.A., Hu, Y.: The university of Florida sparse matrix collection. ACM Trans. Math. Softw. 38(1), 1–25. https://doi.org/10.1145/2049662.2049663 (2012)

  18. Fan, H.T., Zheng, B.: Modified SIMPLE preconditioners for saddle point problems from steady incompressible Navier–Stokes equations. J. Comput. Appl. Math. 365, 112360 (2019). https://doi.org/10.1016/j.cam.2019.112360

    Article  MathSciNet  MATH  Google Scholar 

  19. Fan, H.T., Zheng, B., Zhu, X.Y.: A relaxed positive semi-definite and skew-Hermitian splitting preconditioner for non-Hermitian generalized saddle point problems. Numer. Algorithms 72(3), 813–834 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. Frigo, M., Castelletto, N., Ferronato, M.: A relaxed physical factorization preconditioner for mixed finite element coupled poromechanics. SIAM J. Sci. Comput. 41(4), B694–B720 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  21. Gander, M.J., Niu, Q., Xu, Y.X.: Analysis of a new dimension-wise splitting iteration with selective relaxation for saddle point problems. BIT Numer. Math. 56(2), 441–465 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  22. Gu, X.M., Zhao, Y.P., Huang, T.Z., Zhao, R.: Efficient preconditioned iterative linear solvers for 3-D magnetostatic problems using edge elements. Adv. Appl. Math. Mech. 12(2), 301–318 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  23. Harlow, F.H., Welch, J.E.: Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Phys. Fluids 8(12), 2182–2189 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  24. Huang, Y.M.: A practical formula for computing optimal parameters in the HSS iteration methods. J. Comput. Appl. Math. 255, 142–149 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  25. Huang, Y.Y., Chao, Z., Chen, G.L.: Spectral properties of the matrix splitting preconditioners for generalized saddle point problems. J. Comput. Appl. Math. 332, 1–12 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  26. Jie, S., Tao, T.: Spectral and High-Order Methods with Applications. Science Press, Beijing (2006)

    MATH  Google Scholar 

  27. Li, C., Vuik, C.: Eigenvalue analysis of the SIMPLE preconditioning for incompressible flow. Numer. Linear Algebra Appl. 11(5–6), 511–523 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  28. Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd edn. SIAM, Philadelphia (2003)

    Book  MATH  Google Scholar 

  29. Salkuyeh, D.K., Masoudi, M., Hezari, D.: On the generalized shift-splitting preconditioner for saddle point problems. Appl. Math. Lett. 48, 55–61 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  30. Xie, Y.J., Ma, C.F.: A modified positive-definite and skew-Hermitian splitting preconditioner for generalized saddle point problems from the Navier–Stokes equation. Numer. Algorithms 72(1), 243–258 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  31. Zhang, J.L.: An efficient variant of HSS preconditioner for generalized saddle point problems. Numer. Linear Algebra Appl. 25(4), e2166 (2018). https://doi.org/10.1002/nla.2166

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Reviewers and Editor for the valuable comments and helpful suggestions. This research was supported by NSFC (11801463), the Applied Basic Research Project of Sichuan Province (2020YJ0007), the Guanghua Talent Project of Southwestern University of Finance and Economics and the Scientific Research Fund of Hunan Provincial Science and Technology Department (2022JJ30416). The third author is a member of Gruppo Nazionale per il Calcolo Scientifico (GNCS) of Istituto Nazionale di Alta Matematica (INdAM), and this work was partially supported by INdAM-GNCS Project CUP_E55F22000270001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xian-Ming Gu.

Ethics declarations

Conflict of interest

The authors declare no potential conflict of interests.

Additional information

Communicated by Michiel E. Hochstenbach.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: In Table 14, the second “Density(B)\(=\)0.01” should be “Density(B)\(=\)0.1”. In Table 15, the second “Density(B)\(=\)0.001” should be “Density(B)=0.005”.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, WH., Gu, XM. & Carpentieri, B. A dimension expanded preconditioning technique for saddle point problems. Bit Numer Math 62, 1983–2004 (2022). https://doi.org/10.1007/s10543-022-00938-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-022-00938-8

Keywords

Mathematics Subject Classification

Navigation