Skip to main content
Log in

\(L^p\)-convergence rate of backward Euler schemes for monotone SDEs

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

We give a unified method to derive the strong convergence rate of the backward Euler scheme for monotone SDEs in \(L^p(\Omega )\)-norm, with general \(p \ge 4\). The results are applied to the backward Euler scheme of SODEs with polynomial growth coefficients. We also generalize the argument to the Galerkin-based backward Euler scheme of SPDEs with polynomial growth coefficients driven by multiplicative trace-class noise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andersson, A., Kruse, R.: Mean-square convergence of the BDF2-Maruyama and backward Euler schemes for SDE satisfying a global monotonicity condition. BIT 57(1), 21–53 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  2. Beccari, M., Hutzenthaler, M., Jentzen, A., Kurniawan, R., Lindner, F., Salimova, D.: Strong and weak divergence of exponential and linear-implicit Euler approximations for stochastic partial differential equations with superlinearly growing nonlinearities. arXiv:1903.06066

  3. Becker, S., Gess, B., Jentzen, A., Kloeden, P.: Strong convergence rates for explicit space-time discrete numerical approximations of stochastic Allen–Cahn equations. arXiv:1711.02423 (accepted in Stoch. Partial Differ. Equ. Anal. Comput.)

  4. Becker, S., Jentzen, A.: Strong convergence rates for nonlinearity-truncated Euler-type approximations of stochastic Ginzburg–Landau equations. Stoch. Process. Appl. 129(1), 28–69 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bréhier, C.-E., Cui, J., Hong, J.: Strong convergence rates of semidiscrete splitting approximations for the stochastic Allen–Cahn equation. IMA J. Numer. Anal. 39(4), 2096–2134 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chassagneux, J.-F., Jacquier, A., Mihaylov, I.: An explicit Euler scheme with strong rate of convergence for financial SDEs with non-Lipschitz coefficients. SIAM J. Financ. Math. 7(1), 993–1021 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cui, J., Hong, J., Liu, Z.: Strong convergence rate of finite difference approximations for stochastic cubic Schrödinger equations. J. Differ. Equ. 263(7), 3687–3713 (2017)

    Article  MATH  Google Scholar 

  8. Cui, J., Hong, J., Liu, Z., Zhou, W.: Strong convergence rate of splitting schemes for stochastic nonlinear Schrödinger equations. J. Differ. Equ. 266(9), 5625–5663 (2019)

    Article  MATH  Google Scholar 

  9. Dörsek, P.: Semigroup splitting and cubature approximations for the stochastic Navier–Stokes equations. SIAM J. Numer. Anal. 50(2), 729–746 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fang, W., Giles, M.B.: Adaptive Euler–Maruyama method for SDEs with nonglobally Lipschitz drift. Ann. Appl. Probab. 30(2), 526–560 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  11. Feng, X., Li, Y., Zhang, Y.: Finite element methods for the stochastic Allen–Cahn equation with gradient-type multiplicative noises. SIAM J. Numer. Anal. 55(1), 194–216 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  12. Higham, D., Mao, X., Stuart, A.: Strong convergence of Euler-type methods for nonlinear stochastic differential equation. SIAM J. Numer. Anal. 40(3), 1041–1063 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hutzenthaler, M., Jentzen, A.: Numerical approximations of stochastic differential equations with non-globally Lipschitz continuous coefficients. Mem. Am. Math. Soc. 236(1112) (2015)

  14. Hutzenthaler, M., Jentzen, A.: On a perturbation theory and on strong convergence rates for stochastic ordinary and partial differential equations with nonglobally monotone coefficients. Ann. Probab. 48(1), 53–93 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hutzenthaler, M., Jentzen, A., Kloeden, P.E.: Strong and weak divergence in finite time of Euler’s method for stochastic differential equations with non-globally Lipschitz continuous coefficients. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 467(2130), 1563–1576 (2011)

  16. Hutzenthaler, M., Jentzen, A., Kloeden, P.E.: Strong convergence of an explicit numerical method for SDEs with nonglobally Lipschitz continuous coefficients. Ann. Appl. Probab. 22(4), 1611–1641 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Jentzen, A., Pušnik, P.: Strong convergence rates for an explicit numerical approximation method for stochastic evolution equations with non-globally Lipschitz continuous nonlinearities. IMA J. Numer. Anal. 40(2), 1005–1050 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kelly, C., Lord, G.J.: Adaptive time-stepping strategies for nonlinear stochastic systems. IMA J. Numer. Anal. 38(3), 1523–1549 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kloeden, P.E., Platen, E.: Numerical Solution of Stochastic Differential Equations, Applications of Mathematics (New York), vol. 23. Springer, Berlin (1992)

    Book  MATH  Google Scholar 

  20. Kovács, M., Larsson, S., Lindgren, F.: On the backward Euler approximation of the stochastic Allen–Cahn equation. J. Appl. Prob. 52, 323–338 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kovács, M., Larsson, S., Lindgren, F.: On the discretisation in time of the stochastic Allen–Cahn equation. Math. Nachr. 291(5–6), 966–995 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kruse, R.: Strong and Weak Approximation of Semilinear Stochastic Evolution Equations. Lecture Notes in Mathematics, vol. 2093. Springer, Cham (2014)

    Book  MATH  Google Scholar 

  23. Lamba, H., Mattingly, J.C., Stuart, A.M.: An adaptive Euler–Maruyama scheme for SDEs: convergence and stability. IMA J. Numer. Anal. 27(3), 479–506 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Liu, W.: Well-posedness of stochastic partial differential equations with Lyapunov condition. J. Differ. Equ. 255(3), 572–592 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. Liu, W., Röckner, M.: Stochastic Partial Differential Equations: An Introduction, Universitext. Springer, Cham (2015)

    Book  MATH  Google Scholar 

  26. Liu, Z., Qiao, Z.: Strong approximation of monotone stochastic partial differential equations driven by white noise. IMA J. Numer. Anal. 40(2), 1074–1093 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  27. Liu, Z., Qiao, Z.: Strong approximation of monotone stochastic partial differential equations driven by multiplicative noise. Stoch. Partial Differ. Equ. Anal. Comput. 9(3), 559–602 (2021)

    MathSciNet  MATH  Google Scholar 

  28. Qi, R., Wang, X.: Optimal error estimates of Galerkin finite element methods for stochastic Allen–Cahn equation with additive noise. J. Sci. Comput. 80(2), 1171–1194 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  29. Qi, R., Wang, X.: Error estimates of semidiscrete and fully discrete finite element methods for the Cahn–Hilliard–Cook equation. SIAM J. Numer. Anal. 58(3), 1613–1653 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  30. Sabanis, S.: Euler approximations with varying coefficients: the case of superlinearly growing diffusion coefficients. Ann. Appl. Probab. 26(4), 2083–2105 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  31. Stuart, A., Humphries, A.: Dynamical Systems and Numerical Analysis. Cambridge University Press, Cambridge (1996)

    MATH  Google Scholar 

  32. Wang, X.: An efficient explicit full-discrete scheme for strong approximation of stochastic Allen–Cahn equation. Stoch. Process. Appl. 130(10), 6271–6299 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  33. Wang, X., Wu, J., Dong, B.: Mean-square convergence rates of stochastic theta methods for SDEs under a coupled monotonicity condition. BIT 60(3), 759–790 (2020)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank the anonymous referees for very helpful remarks and suggestions. The author is supported by National Natural Science Foundation of China, No. 12101296 and SUSTech fund, No. Y01286232.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhihui Liu.

Additional information

Communicated by Axel Målqvist.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z. \(L^p\)-convergence rate of backward Euler schemes for monotone SDEs. Bit Numer Math 62, 1573–1590 (2022). https://doi.org/10.1007/s10543-022-00923-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-022-00923-1

Keywords

Mathematics Subject Classification

Navigation