Skip to main content
Log in

A rank-adaptive robust integrator for dynamical low-rank approximation

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

A rank-adaptive integrator for the dynamical low-rank approximation of matrix and tensor differential equations is presented. The fixed-rank integrator recently proposed by two of the authors is extended to allow for an adaptive choice of the rank, using subspaces that are generated by the integrator itself. The integrator first updates the evolving bases and then does a Galerkin step in the subspace generated by both the new and old bases, which is followed by rank truncation to a given tolerance. It is shown that the adaptive low-rank integrator retains the exactness, robustness and symmetry-preserving properties of the previously proposed fixed-rank integrator. Beyond that, up to the truncation tolerance, the rank-adaptive integrator preserves the norm when the differential equation does, it preserves the energy for Schrödinger equations and Hamiltonian systems, and it preserves the monotonic decrease of the functional in gradient flows. Numerical experiments illustrate the behaviour of the rank-adaptive integrator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ceruti, G., Lubich, C.: An unconventional robust integrator for dynamical low-rank approximation. BIT Numer. Math. (2021)

  2. Ceruti, G., Kusch, J., Lubich, C.: Numerical testcases for “A rank-adaptive robust integrator for dynamical low-rank approximation” https://github.com/JonasKu/publication-A-rank-adaptive-robust-integrator-for-dynamical-low-rank-approximation.git (2021)

  3. De Lathauwer, L., De Moor, B., Vandewalle, J.: A multilinear singular value decomposition. SIAM J. Matrix Anal. Appl. 21(4), 1253–1278 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. De Lathauwer, L., De Moor, B., Vandewalle, J.: On the best rank-1 and rank-$(R_1, R_2,\ldots, R_N)$ approximation of higher-order tensors. SIAM J. Matrix Anal. Appl. 21(4), 1324–1342 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dektor, A., Rodgers, A., Venturi, D.: Rank-adaptive tensor methods for high-dimensional nonlinear PDEs. arXiv:2012.05962 (2020)

  6. Després, B., Poëtte, G., Lucor, D.: Robust uncertainty propagation in systems of conservation laws with the entropy closure method. In: Uncertainty Quantification in Computational Fluid Dynamics, pp. 105–149. Springer (2013)

  7. Einkemmer, L., Joseph, I.: A mass, momentum, and energy conservative dynamical low-rank scheme for the Vlasov equation. arXiv:2101.12571 (2021)

  8. Einkemmer, L., Lubich, C.: A low-rank projector-splitting integrator for the Vlasov–Poisson equation. SIAM J. Sci. Comput. 40(5), B1330–B1360 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  9. Einkemmer, L., Hu, J., Ying, L.: An efficient dynamical low-rank algorithm for the Boltzmann-BGK equation close to the compressible viscous flow regime. arXiv:2101.07104 (2021)

  10. Feppon, F., Lermusiaux, P.F.: Dynamically orthogonal numerical schemes for efficient stochastic advection and Lagrangian transport. SIAM Rev. 60(3), 595–625 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ganapol, B.: Homogeneous infinite media time-dependent analytic benchmarks for X-TM transport methods development. Los Alamos National Laboratory (1999)

  12. Ganapol, B.D.: Analytical benchmarks for nuclear engineering applications. Case Stud. Neutron Transp. Theory (2008)

  13. Garrett, C.K., Hauck, C.D.: A comparison of moment closures for linear kinetic transport equations: the line source benchmark. Transp. Theory Stat. Phys. 42(6–7), 203–235 (2013)

    Article  MATH  Google Scholar 

  14. Haegeman, J., Cirac, J.I., Osborne, T.J., Pižorn, I., Verschelde, H., Verstraete, F.: Time-dependent variational principle for quantum lattices. Phys. Rev. Lett. 107(7), 070601 (2011)

    Article  Google Scholar 

  15. Haegeman, J., Lubich, C., Oseledets, I., Vandereycken, B., Verstraete, F.: Unifying time evolution and optimization with matrix product states. Phys. Rev. B 94(16), 165116 (2016)

    Article  Google Scholar 

  16. Hairer, E., Lubich, C.: Energy-diminishing integration of gradient systems. IMA J. Numer. Anal. 34(2), 452–461 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kieri, E., Lubich, C., Walach, H.: Discretized dynamical low-rank approximation in the presence of small singular values. SIAM J. Numer. Anal. 54(2), 1020–1038 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. Koch, O., Lubich, C.: Dynamical low-rank approximation. SIAM J. Matrix Anal. Appl. 29(2), 434–454 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM Rev. 51(3), 455–500 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kusch, J., Alldredge, G.W., Frank, M.: Maximum-principle-satisfying second-order intrusive polynomial moment scheme. SMAI J. Comput. Math. 5, 23–51 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kusch, J., Ceruti, G., Einkemmer, L., Frank, M.: Dynamical low-rank approximation for Burgers’ equation with uncertainty. arXiv:2105.04358 (2021)

  22. Lubich, C., Oseledets, I.V.: A projector-splitting integrator for dynamical low-rank approximation. BIT 54(1), 171–188 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lubich, C., Oseledets, I.V., Vandereycken, B.: Time integration of tensor trains. SIAM J. Numer. Anal. 53(2), 917–941 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. Meyer, H.-D., Manthe, U., Cederbaum, L.S.: The multi-configurational time-dependent Hartree approach. Chem. Phys. Lett. 165(1), 73–78 (1990)

    Article  Google Scholar 

  25. Meyer, H.-D., Gatti, F., Worth, G.A.: Multidimensional Quantum Dynamics: MCTDH Theory and Applications. Wiley, London (2009)

    Book  Google Scholar 

  26. Musharbash, E., Nobile, F.: Dual dynamically orthogonal approximation of incompressible Navier–Stokes equations with random boundary conditions. J. Comput. Phys. 354, 135–162 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  27. Musharbash, E., Nobile, F., Vidličková, E.: Symplectic dynamical low rank approximation of wave equations with random parameters. BIT Numer. Math. 60, 1153–1201 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  28. Peng, Z., McClarren, R.G.: A high-order/low-order (HOLO) algorithm for preserving conservation in time-dependent low-rank transport calculations. J. Comput. Phys. 447, 110672 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  29. Peng, Z., McClarren, R.G., Frank, M.: A low-rank method for two-dimensional time-dependent radiation transport calculations. J. Comput. Phys. 421, 109735 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  30. Poëtte, G., Després, B., Lucor, D.: Uncertainty quantification for systems of conservation laws. J. Comput. Phys. 228(7), 2443–2467 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  31. Sapsis, T.P., Lermusiaux, P.F.: Dynamically orthogonal field equations for continuous stochastic dynamical systems. Physica D 238(23–24), 2347–2360 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  32. Schrammer, S.: Doctoral thesis in preparation. KIT (2021)

  33. Tryoen, J., Le Maitre, O., Ndjinga, M., Ern, A.: Intrusive Galerkin methods with upwinding for uncertain nonlinear hyperbolic systems. J. Comput. Phys. 229(18), 6485–6511 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  34. Yang, M., White, S.R.: Time-dependent variational principle with ancillary Krylov subspace. Phys. Rev. B 102(9), 094315 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)—Project-ID 258734477—SFB 1173. It started out from a discussion at the 2021 annual meeting of SFB 1173 that included Marlis Hochbruck and Stefan Schrammer. We thank Martin Frank for fruitful discussions on radiation transport theory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianluca Ceruti.

Additional information

Communicated by Antonella Zanna Munthe-Kaas.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ceruti, G., Kusch, J. & Lubich, C. A rank-adaptive robust integrator for dynamical low-rank approximation. Bit Numer Math 62, 1149–1174 (2022). https://doi.org/10.1007/s10543-021-00907-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-021-00907-7

Keywords

Mathematics Subject Classification

Navigation