Skip to main content
Log in

Scalar auxiliary variable approach for conservative/dissipative partial differential equations with unbounded energy functionals

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we present a novel investigation of the so-called SAV approach, which is a framework to construct linearly implicit geometric numerical integrators for partial differential equations with variational structure. SAV approach was originally proposed for the gradient flows that have lower-bounded nonlinear potentials such as the Allen–Cahn and Cahn–Hilliard equations, and this assumption on the energy was essential. In this paper, we propose a novel approach to address gradient flows with unbounded energy functionals such as the KdV equation by a decomposition of energy functionals. Further, we will show that the equation of the SAV approach, which is a system of equations with scalar auxiliary variables, is expressed as another gradient system that inherits the variational structure of the original system. This expression allows us to construct novel higher-order integrators by a certain class of Runge-Kutta methods. We will propose second and fourth order schemes for conservative systems in our framework and present several numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Akrivis, G., Li, B., Li, D.: Energy-decaying extrapolated RK-SAV methods for the Allen–Cahn and Cahn–Hilliard Equations. SIAM J. Sci. Comput. 41(6), A3703–A3727 (2019). https://doi.org/10.1137/19M1264412

    Article  MathSciNet  MATH  Google Scholar 

  2. Allen, S.M., Cahn, J.W.: A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metallurgica 27(6), 1085–1095 (1979). https://doi.org/10.1016/0001-6160(79)90196-2

    Article  Google Scholar 

  3. Besse, C.: A relaxation scheme for the nonlinear Schrödinger equation. SIAM J. Numer. Anal. 42(3), 934–952 (2004). https://doi.org/10.1137/S0036142901396521

    Article  MathSciNet  MATH  Google Scholar 

  4. Bo, Y., Wang, Y., Cai, W.: Arbitrary high-order linearly implicit energy-preserving algorithms for Hamiltonian PDEs. arXiv:2011.08375 (2020)

  5. Cahn, J..W., Hilliard, J..E.: Free energy of a non-uniform system. I. Interfacial free energy. J. Chem. Phys. 28, 258–267 (1958)

    Article  Google Scholar 

  6. Cai, W., Jiang, C., Wang, Y., Song, Y.: Structure-preserving algorithms for the two-dimensional sine-Gordon equation with Neumann boundary conditions. J. Comput. Phys. 395, 166–185 (2019). https://doi.org/10.1016/j.jcp.2019.05.048

    Article  MathSciNet  MATH  Google Scholar 

  7. Camassa, R., Holm, D.D.: An integrable shallow water equation with peaked solitons. Phys. Rev. Lett. 71(11), 1661–1664 (1993). https://doi.org/10.1103/PhysRevLett.71.1661

    Article  MathSciNet  MATH  Google Scholar 

  8. Celledoni, E., Grimm, V., McLachlan, R.I., McLaren, D.I., O’Neale, D., Owren, B., Quispel, G.R.W.: Preserving energy resp. dissipation in numerical PDEs using the “average vector field” method. J. Comput. Phys. 231(20), 6770–6789 (2012). https://doi.org/10.1016/j.jcp.2012.06.022

  9. Cheng, Q.: The generalized scalar auxiliary variable approach (G-SAV) for gradient flows. arXiv:2002.00236 (2020)

  10. Cheng, Q., Shen, J.: Multiple scalar auxiliary variable (MSAV) approach and its application to the phase-field vesicle membrane model. SIAM J. Sci. Comput. 40(6), A3982–A4006 (2018). https://doi.org/10.1137/18M1166961

    Article  MathSciNet  MATH  Google Scholar 

  11. Dahlby, M., Owren, B.: A general framework for deriving integral preserving numerical methods for PDEs. SIAM J. Sci. Comput. 33(5), 2318–2340 (2011). https://doi.org/10.1137/100810174

    Article  MathSciNet  MATH  Google Scholar 

  12. Fu, Y., Cai, W., Wang, Y.: A structure-preserving algorithm for the fractional nonlinear Schrödinger equation based on the SAV approach. arXiv:1911.07379 (2019)

  13. Furihata, D.: Finite difference schemes for \(\partial u/\partial t=(\partial /\partial x)^\alpha \delta G/\delta u\) that inherit energy conservation or dissipation property. J. Comput. Phys. 156(1), 181–205 (1999). https://doi.org/10.1006/jcph.1999.6377

    Article  MathSciNet  MATH  Google Scholar 

  14. Furihata, D., Matsuo, T.: Discrete variational derivative method-A structure-preserving numerical method for partial differential equations. CRC Press (2011)

  15. Furihata, D., Mori, M.: General derivation of finite difference schemes by means of a discrete variation (in Japanese). Trans. Jpn. Soc. Indust. Appl. 8(3), 317–340 (1998)

    Google Scholar 

  16. Gong, Y., Zhao, J., Wang, Q.: Arbitrarily high-order unconditionally energy stable SAV schemes for gradient flow models. Comput. Phys. Commun. p. 107033 (2019). https://doi.org/10.1016/j.cpc.2019.107033

  17. Gong, Y., Zhao, J., Wang, Q.: Arbitrarily high-order linear energy stable schemes for gradient flow models. J. Comput. Phys. 419, 109,610, 20 (2020). https://doi.org/10.1016/j.jcp.2020.109610

  18. Gonzalez, O.: Time integration and discrete Hamiltonian systems. J. Nonlinear Sci. 6(5), 449–467 (1996). https://doi.org/10.1007/s003329900018

    Article  MathSciNet  MATH  Google Scholar 

  19. Hairer, E.: Energy-preserving variant of collocation methods. JNAIAM. J. Numer. Anal. Ind. Appl. Math. 5(1–2), 73–84 (2010)

    MathSciNet  MATH  Google Scholar 

  20. Hairer, E., Lubich, C.: Energy-diminishing integration of gradient systems. IMA J. Numer. Anal. 34(2), 452–461 (2014). https://doi.org/10.1093/imanum/drt031

    Article  MathSciNet  MATH  Google Scholar 

  21. Hairer, E., Lubich, C., Wanner, G.: Geometric numerical integration, Structure-preserving algorithms for ordinary differential equations, Springer Series in Computational Mathematics, vol. 31. Springer (2010)

  22. Han, D., Brylev, A., Yang, X., Tan, Z.: Numerical analysis of second order, fully discrete energy stable schemes for phase field models of two-phase incompressible flows. J. Sci. Comput. 70(3), 965–989 (2017). https://doi.org/10.1007/s10915-016-0279-5

    Article  MathSciNet  MATH  Google Scholar 

  23. Jiang, C., Gong, Y., Cai, W., Wang, Y.: A linearly implicit structure-preserving scheme for the Camassa–Holm equation based on multiple scalar auxiliary variables approach. J. Sci. Comput. 83(1), 20 (2020). https://doi.org/10.1007/s10915-020-01201-4

    Article  MathSciNet  MATH  Google Scholar 

  24. Li, X., Shen, J., Rui, H.: Energy stability and convergence of SAV block-centered finite difference method for gradient flows. Math. Comp. 88(319), 2047–2068 (2019). https://doi.org/10.1090/mcom/3428

    Article  MathSciNet  MATH  Google Scholar 

  25. Liu, Z.: Efficient invariant energy quadratization and scalar auxiliary variable approaches without bounded below restriction for phase field models. arXiv:1906.03621 (2019)

  26. Liu, Z.: Energy stable schemes for gradient flows based on novel auxiliary variable with energy bounded above. arXiv:1907.04142 (2019)

  27. Liu, Z., Li, X.: Efficient modified techniques of invariant energy quadratization approach for gradient flows. Appl. Math. Lett. 98, 206–214 (2019). https://doi.org/10.1016/j.aml.2019.06.006

    Article  MathSciNet  MATH  Google Scholar 

  28. Liu, Z., Li, X.: Step-by-step solving schemes based on scalar auxiliary variable and invariant energy quadratization approaches for gradient flows. arXiv:2001.00812 (2019)

  29. Liu, Z., Li, X.: The exponential scalar auxiliary variable (E-SAV) approach for phase field models and its explicit computing. SIAM J. Sci. Comput. 42(3), B630–B655 (2020). https://doi.org/10.1137/19M1305914

    Article  MathSciNet  MATH  Google Scholar 

  30. Matsuo, T., Furihata, D.: Dissipative or conservative finite-difference schemes for complex-valued nonlinear partial differential equations. J. Comput. Phys. 171(2), 425–447 (2001). https://doi.org/10.1006/jcph.2001.6775

    Article  MathSciNet  MATH  Google Scholar 

  31. Matsuo, T., Sugihara, M., Furihata, D., Mori, M.: Spatially accurate dissipative or conservative finite difference schemes derived by the discrete variational method. Jpn. J. Indust. Appl. Math. 19, 311–330 (2002). https://doi.org/10.1007/BF03167482

    Article  MathSciNet  MATH  Google Scholar 

  32. McLachlan, R.I., Quispel, G.R.W., Robidoux, N.: Unified approach to Hamiltonian systems, Poisson systems, gradient systems, and systems with Lyapunov functions or first integrals. Phys. Rev. Lett. 81(12), 2399–2403 (1998). https://doi.org/10.1103/PhysRevLett.81.2399

    Article  MathSciNet  MATH  Google Scholar 

  33. McLachlan, R.I., Quispel, G.R.W., Robidoux, N.: Geometric integration using discrete gradients. R. Soc. Lond. Philos. Trans. Ser. A Math. Phys. Eng. Sci. 357(1754), 1021–1045 (1999). https://doi.org/10.1098/rsta.1999.0363

  34. Shen, J., Xu, J.: Convergence and error analysis for the scalar auxiliary variable (SAV) schemes to gradient flows. SIAM J. Numer. Anal. 56(5), 2895–2912 (2018). https://doi.org/10.1137/17M1159968

    Article  MathSciNet  MATH  Google Scholar 

  35. Shen, J., Xu, J., Yang, J.: The scalar auxiliary variable (SAV) approach for gradient flows. J. Comput. Phys. 353, 407–416 (2018). https://doi.org/10.1016/j.jcp.2017.10.021

    Article  MathSciNet  MATH  Google Scholar 

  36. Shen, J., Xu, J., Yang, J.: A new class of efficient and robust energy stable schemes for gradient flows. SIAM Rev. 61(3), 474–506 (2019). https://doi.org/10.1137/17M1150153

    Article  MathSciNet  MATH  Google Scholar 

  37. Swift, J., Hohenberg, P.C.: Hydrodynamic fluctuations at the convective instability. Phys. Rev. A 15, 319–328 (1977)

    Article  Google Scholar 

  38. Yang, X.: Linear, first and second-order, unconditionally energy stable numerical schemes for the phase field model of homopolymer blends. J. Comput. Phys. 327, 294–316 (2016). https://doi.org/10.1016/j.jcp.2016.09.029

    Article  MathSciNet  MATH  Google Scholar 

  39. Yang, X., Han, D.: Linearly first- and second-order, unconditionally energy stable schemes for the phase field crystal model. J. Comput. Phys. 330, 1116–1134 (2017). https://doi.org/10.1016/j.jcp.2016.10.020

    Article  MathSciNet  MATH  Google Scholar 

  40. Yang, Z., Dong, S.: A roadmap for discretely energy-stable schemes for dissipative systems based on a generalized auxiliary variable with guaranteed positivity. J. Comput. Phys. 404, 109,121 (2020). https://doi.org/10.1016/j.jcp.2019.109121

  41. Zhang, F., Pérez-García, V.M., Vázquez, L.: Numerical simulation of nonlinear Schrödinger systems: a new conservative scheme. Appl. Math. Comput. 71(2–3), 165–177 (1995). https://doi.org/10.1016/0096-3003(94)00152-T

    Article  MathSciNet  MATH  Google Scholar 

  42. Zhang, H., Qian, X., Song, S.: Novel high-order energy-preserving diagonally implicit Runge-Kutta schemes for nonlinear Hamiltonian ODEs. Appl. Math. Lett. 102, 106,091, 9 (2020). https://doi.org/10.1016/j.aml.2019.106091

  43. Zhao, J., Wang, Q., Yang, X.: Numerical approximations for a phase field dendritic crystal growth model based on the invariant energy quadratization approach. Internat. J. Numer. Methods Engrg. 110(3), 279–300 (2017). https://doi.org/10.1002/nme.5372

    Article  MathSciNet  MATH  Google Scholar 

  44. Zhuang, Q., Shen, J.: Efficient SAV approach for imaginary time gradient flows with applications to one- and multi-component Bose-Einstein condensates. J. Comput. Phys. 396, 72–88 (2019) https://doi.org/10.1016/j.jcp.2019.06.043

Download references

Acknowledgements

The first author was supported by JSPS Grant-in-Aid for Early-Career Scientists (No. 19K14590). The second author was supported by JSPS Grant-in-Aid for Research Activity Start-up (No. 19K23399).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomoya Kemmochi.

Additional information

Communicated by Christian Lubich.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kemmochi, T., Sato, S. Scalar auxiliary variable approach for conservative/dissipative partial differential equations with unbounded energy functionals. Bit Numer Math 62, 903–930 (2022). https://doi.org/10.1007/s10543-021-00904-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-021-00904-w

Keywords

Mathematics Subject Classification

Navigation