Skip to main content
Log in

Comparison theorems for splittings of M-matrices in (block) Hessenberg form

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

Some variants of the (block) Gauss–Seidel iteration for the solution of linear systems with M-matrices in (block) Hessenberg form are discussed. Comparison results for the asymptotic convergence rate of some regular splittings are derived: in particular, we prove that for a lower-Hessenberg M-matrix \(\rho (P_{GS})\ge \rho (P_S)\ge \rho (P_{AGS})\), where \(P_{GS}, P_S, P_{AGS}\) are the iteration matrices of the Gauss–Seidel, staircase, and anti-Gauss–Seidel method. This is a result that does not seem to follow from classical comparison results, as these splittings are not directly comparable. It is shown that the concept of stair partitioning provides a powerful tool for the design of new variants that are suited for parallel computation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Amodio, P., Mazzia, F.: A parallel Gauss–Seidel method for block tridiagonal linear systems. SIAM J. Sci. Comput. 16(6), 1451–1461 (1995). https://doi.org/10.1137/0916084

    Article  MathSciNet  MATH  Google Scholar 

  2. Berman, A., Plemmons, R.J.: Nonnegative matrices in the mathematical sciences. In: Classics in Applied Mathematics, vol. 9. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (1994). https://doi.org/10.1137/1.9781611971262. Revised reprint of the 1979 original

  3. Bini, D., Meini, B.: On cyclic reduction applied to a class of Toeplitz-like matrices arising in queueing problems. In: Stewart, W.J. (ed.) Computations with Markov Chains. Springer, Boston (1995)

    Google Scholar 

  4. Csordas, G., Varga, R.S.: Comparisons of regular splittings of matrices. Numer. Math. 44(1), 23–35 (1984). https://doi.org/10.1007/BF01389752

    Article  MathSciNet  MATH  Google Scholar 

  5. Dongarra, J., Cleary, A.: Implementation in scalapack of divide-and-conquer algorithms for banded and tridiagonal linear systems. Center for Research on Parallel Computation (CRPC), Rice University, Tech. rep. (1997)

  6. Dudin, S., Dudin, A., Kostyukova, O., Dudina, O.: Effective algorithm for computation of the stationary distribution of multi-dimensional level-dependent Markov chains with upper block-Hessenberg structure of the generator. J. Comput. Appl. Math. 366, 112 (2020). https://doi.org/10.1016/j.cam.2019.112425

    Article  MathSciNet  MATH  Google Scholar 

  7. Forsythe, G.E.: Solving linear algebraic equations can be interesting. Bull. Am. Math. Soc. 59, 299–329 (1953). https://doi.org/10.1090/S0002-9904-1953-09718-X

    Article  MathSciNet  MATH  Google Scholar 

  8. Gemignani, L., Lotti, G.: Efficient and stable solution of M-matrix linear systems of (block) Hessenberg form. SIAM J. Matrix Anal. Appl. 24(3), 852–876 (2003). https://doi.org/10.1137/S0895479801387085

    Article  MathSciNet  MATH  Google Scholar 

  9. Grinstead, C.M., Snell, J.L.: Introduction to Probability. AMS (2003). http://www.dartmouth.edu/~chance/teaching_aids/books_articles/probability_book/book.html

  10. Kahan, W.M.: Gauss–Seidel methods of solving large systems of linear equations. Ph.D. thesis (1958)

  11. Kalauch, A., Lavanya, S., Sivakumar, K.C.: Singular irreducible \(M\)-matrices revisited. Linear Algebra Appl. 565, 47–64 (2019). https://doi.org/10.1016/j.laa.2018.11.030

    Article  MathSciNet  MATH  Google Scholar 

  12. Latouche, G., Ramaswami, V.: Introduction to Matrix Analytic Methods in Stochastic Modeling. ASA-SIAM Series on Statistics and Applied Probability. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA; American Statistical Association, Alexandria, VA (1999). https://doi.org/10.1137/1.9780898719734

  13. Li, H.B., Huang, T.Z., Zhang, Y., Liu, X.P., Li, H.: On some new approximate factorization methods for block tridiagonal matrices suitable for vector and parallel processors. Math. Comput. Simul. 79(7), 2135–2147 (2009). https://doi.org/10.1016/j.matcom.2008.09.009

    Article  MathSciNet  MATH  Google Scholar 

  14. Lu, H.: Stair matrices and their generalizations with applications to iterative methods. I. A generalization of the successive overrelaxation method. SIAM J. Numer. Anal 37(1), 1–17 (1999). https://doi.org/10.1137/S0036142998343294

    Article  MathSciNet  MATH  Google Scholar 

  15. Meier-Hellstern, K.: The analysis of a queue arising in overflow models. IEEE Trans. Commun. 37(4), 367–372 (1989). https://doi.org/10.1109/26.20117

    Article  MathSciNet  Google Scholar 

  16. Meurant, G.: Domain decomposition preconditioners for the conjugate gradient method. Calcolo 25(1–2), 103–119 (1989). https://doi.org/10.1007/BF02575749

    Article  MathSciNet  MATH  Google Scholar 

  17. Nelson, R.: Probability, Stochastic Processes, and Queueing Theory. The Mathematics of Computer Performance Modeling, Springer, New York (1995). https://doi.org/10.1007/978-1-4757-2426-4

    Book  MATH  Google Scholar 

  18. O’Leary, D.P.: Iterative methods for finding the stationary vector for Markov chains. In: Linear Algebra, Markov Chains, and Queueing Models (Minneapolis, MN, 1992), IMA Vol. Math. Appl., vol. 48, pp. 125–136. Springer, New York (1993). https://doi.org/10.1007/978-1-4613-8351-2_9

  19. Ortega, J.M., Voigt, R.G.: Solution of partial differential equations on vector and parallel computers. SIAM Rev. 27(2), 149–240 (1985). https://doi.org/10.1137/1027055

    Article  MathSciNet  MATH  Google Scholar 

  20. Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd edn. Society for Industrial and Applied Mathematics, Philadelphia (2003). https://doi.org/10.1137/1.9780898718003

    Book  MATH  Google Scholar 

  21. Shang, Y.: A distributed memory parallel Gauss–Seidel algorithm for linear algebraic systems. Comput. Math. Appl. 57(8), 1369–1376 (2009). https://doi.org/10.1016/j.camwa.2009.01.034

    Article  MathSciNet  MATH  Google Scholar 

  22. Stewart, G.W.: On the solution of block Hessenberg systems. Numer. Linear Algebra Appl. 2(3), 287–296 (1995). https://doi.org/10.1002/nla.1680020309

    Article  MathSciNet  MATH  Google Scholar 

  23. Varga, R.S.: Matrix Iterative Analysis. Springer Series in Computational Mathematics, vol. 27, expanded Springer, Berlin (2000). https://doi.org/10.1007/978-3-642-05156-2

    Book  MATH  Google Scholar 

  24. Wallin, D., Löf, H., Hagersten, E., Holmgren, S.: Multigrid and Gauss–Seidel smoothers revisited: parallelization on chip multiprocessors. In: Egan, G.K., Muraoka, Y. (eds.) Proceedings of the 20th Annual International Conference on Supercomputing, ICS 2006, Cairns, Queensland, Australia, pp. 145–155. ACM (2006). https://doi.org/10.1145/1183401.1183423

  25. Woźnicki, Z.I.: Matrix splitting principles. Int. J. Math. Math. Sci. 28(5), 251–284 (2001). https://doi.org/10.1155/S0161171201007062

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federico Poloni.

Additional information

Communicated by Daniel Kressner.

The authors are partially supported by INDAM/GNCS and by the project PRA_2020_61 of the University of Pisa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gemignani, L., Poloni, F. Comparison theorems for splittings of M-matrices in (block) Hessenberg form. Bit Numer Math 62, 849–867 (2022). https://doi.org/10.1007/s10543-021-00899-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-021-00899-4

Keywords

Mathematics Subject Classification

Navigation