Skip to main content
Log in

Positivity-preserving symplectic methods for the stochastic Lotka–Volterra predator-prey model

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

In this paper, positivity-preserving symplectic numerical approximations are investigated for the 2d-dimensional stochastic Lotka–Volterra predator-prey model driven by multiplicative noises, which plays an important role in ecosystem. The model is shown to possess both a unique positive solution and a stochastic symplectic geometric structure, and hence can be interpreted as a stochastic Hamiltonian system. To inherit the intrinsic biological characteristic of the original system, a class of stochastic Runge–Kutta methods is presented, which is proved to preserve positivity of the numerical solution and possess the discrete stochastic symplectic geometric structure as well. Uniform boundedness of both the exact solution and the numerical one are obtained, which are crucial to derive the conditions for convergence order one in the \(\mathbb {L}^1(\varOmega )\)-norm. Numerical examples illustrate the stability and structure-preserving property of the proposed methods over long time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Arnold, L., Horsthemke, W., Stucki, J.W.: The influence of external real and white noise on the Lotka–Volterra model. Biomed. J. 21(5), 451–471 (1979)

    MathSciNet  MATH  Google Scholar 

  2. Chen, C., Hong, J.: Symplectic Runge–Kutta semidiscretization for stochastic Schrödinger equation. SIAM J. Numer. Anal. 54(4), 2569–2593 (2016)

    Article  MathSciNet  Google Scholar 

  3. Chen, C., Hong, J., Jin, D., Sun, L.: Asymptotically-preserving large deviations principles by stochastic symplectic methods for a linear stochastic oscillator. SIAM J. Numer. Anal. 59(1), 32–59 (2021)

    Article  MathSciNet  Google Scholar 

  4. Chessa, S., Yashima, H.F.: In: Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (ed.) The stochastic equation of predator-prey population dynamics, vol. 5, pp. 789–804. (2002)

  5. De Bouard, A., Debussche, A.: A semi-discrete scheme for the stochastic nonlinear Schrödinger equation. Numer. Math. 96(4), 733–770 (2004)

    Article  MathSciNet  Google Scholar 

  6. Goel, N.S., Maitra, S.C., Montroll, E.W.: Nonlinear Models of Interacting Populations. Academic Press, New York (1971)

    Google Scholar 

  7. Hong, J., Sun, L., Wang, X.: High order conformal symplectic and ergodic schemes for the stochastic Langevin equation via generating functions. SIAM J. Numer. Anal. 55(6), 3006–3029 (2017)

    Article  MathSciNet  Google Scholar 

  8. Hong, J., Wang, X.: Invariant Measures for Stochastic Nonlinear Schrödinger Equations: Numerical Approximations and Symplectic Structures, Lecture Notes in Mathematics 2251, Springer, Singapore (2019)

  9. Kloeden, P.E., Platen, E., Wright, I.: The approximation of multiple stochastic integrals. Stochastic Anal. Appl. 10(4), 431–441 (1992)

    Article  MathSciNet  Google Scholar 

  10. Li, X., Jiang, D., Mao, X.: Population dynamical behavior of Lotka–Volterra system under regime switching. J. Comput. Appl. Math. 232(2), 427–448 (2009)

    Article  MathSciNet  Google Scholar 

  11. Liu, M., Fan, M.: Permanence of stochastic Lotka–Volterra systems. J. Nonlinear Sci. 27(2), 425–452 (2017)

    Article  MathSciNet  Google Scholar 

  12. Mao, X., Yuan, C.: Stochastic Differential Equations with Markovian Switching. Imperial College Press, London (2006)

    Book  Google Scholar 

  13. Milstein, G.N., Tretyakov, M.V.: Stochastic Numerics for Mathematical Physics. Springer, Berlin (2004)

    Book  Google Scholar 

  14. Nguyen, D.H., Yin, G.: Coexistence and exclusion of stochastic competitive Lotka–Volterra models. J. Differ. Equ. 262(3), 1192–1225 (2017)

    Article  MathSciNet  Google Scholar 

  15. Rudnicki, R.: Long-time behavior of a stochastic prey-predator model. Stoch. Proc. Appl. 108(1), 93–107 (2003)

    Article  Google Scholar 

  16. Rudnicki, R., Pichor, K.: Influence of stochastic perturbation on prey-predator systems. Math. Biosci. 206, 108–119 (2007)

    Article  MathSciNet  Google Scholar 

  17. Soize, C.: The Fokker-Planck Equation for Stochastic Dynamical Systems and Its Explicit Steady State Solutions. World Scientific Publishing Co. Inc., River Edge (1994)

    Book  Google Scholar 

  18. Wang, L., Hong, J.: Generating functions for stochastic symplectic methods. Discrete Cont. Dyn. 34(3), 1211–1228 (2014)

    Article  MathSciNet  Google Scholar 

  19. West, R., Mobilia, M., Rucklidge, A.M.: Survival behavior in the cyclic Lotka–Volterra model with a randomly switching reaction rate. Phys. Rev. E 97, 022406 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu Wang.

Additional information

Communicated by David Cohen.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Jialin Hong and Xu Wang are funded by National Natural Science Foundation of China (Nos. 91630312, 11971470, 11871068, 11926417, 11711530017). Lihai Ji is funded by National Natural Science Foundation of China (Nos. 11601032, 11971458, 12171047)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, J., Ji, L., Wang, X. et al. Positivity-preserving symplectic methods for the stochastic Lotka–Volterra predator-prey model. Bit Numer Math 62, 493–520 (2022). https://doi.org/10.1007/s10543-021-00891-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-021-00891-y

Keywords

Mathematics Subject Classification

Navigation