Skip to main content
Log in

Efficient shifted fractional trapezoidal rule for subdiffusion problems with nonsmooth solutions on uniform meshes

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

This article devotes to developing robust and simple correction techniques with efficient algorithms for a class of second-order time stepping methods, namely the shifted fractional trapezoidal rule (SFTR), for subdiffusion problems to resolve the initial singularity and nonlocality. The stability analysis and sharp error estimates in terms of the smoothness of the initial data and source term are presented. As a byproduct in numerical tests, we find amazingly that the Crank–Nicolson scheme (\(\theta =\frac{1}{2}\)) without initial corrections can restore the optimal convergence rate for the subdiffusion problem with smooth initial data and source terms. To deal with the nonlocality, fast algorithms are considered to reduce the computational cost from \(O(N^2)\) to \(O(N \log N)\) and save the memory storage from O(N) to \(O(\log N)\), where N denotes the number of time levels. Numerical tests are performed to verify the sharpness of the theoretical results and confirm the efficiency and accuracy of initial corrections and the fast algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Akrivis, G., Li, B., Lubich, C.: Combining maximal regularity and energy estimates for time discretizations of quasilinear parabolic equations. Math. Comput. 86, 1527–1552 (2017)

    Article  MathSciNet  Google Scholar 

  2. Alikhanov, A.: A new difference scheme for the time fractional diffusion equation. J. Comput. Phys. 280, 424–438 (2015)

    Article  MathSciNet  Google Scholar 

  3. Baffet, D., Hesthaven, J.S.: A kernel compression scheme for fractional differential equations. SIAM J. Numer. Anal. 55, 496–520 (2017)

    Article  MathSciNet  Google Scholar 

  4. Chen, H., Stynes, M.: Blow-up of error estimates in time-fractional initial-boundary value problems. IMA J. Numer. Anal. 00, 1–24 (2020)

    Google Scholar 

  5. Cuesta, E., Lubich, C., Palencia, C.: Convolution quadrature time discretization of fractional diffusion-wave equations. Math. Comput. 75, 673–696 (2006)

    Article  MathSciNet  Google Scholar 

  6. Ding, H., Li, C., Yi, Q.: A new second-order midpoint approximation formula for Riemann-Liouville derivative: algorithm and its application. IMA J. Appl. Math. 82, 909–944 (2017)

    Article  MathSciNet  Google Scholar 

  7. Diethelm, K.: An algorithm for the numerical solution of differential equations of fractional order. Electron. Trans. Numer. Anal. 5, 1–6 (1997)

    MathSciNet  MATH  Google Scholar 

  8. Gao, G., Sun, Z., Zhang, H.: A new fractional numerical differentiation formula to approximate the Caputo fractional derivative and its applications. J. Comput. Phys. 259, 33–50 (2014)

    Article  MathSciNet  Google Scholar 

  9. Gunzburger, M., Wang, J.: A second-order Crank-Nicolson method for time-fractional PDEs. Int. J. Numer. Anal. Model. 16, 225–239 (2019)

    MathSciNet  MATH  Google Scholar 

  10. Jiang, S., Zhang, J., Zhang, Q., Zhang, Z.: Fast evaluation of the Caputo fractional derivative and its applications to fractional diffusion equations. Commun. Comput. Phys. 21, 650–678 (2017)

    Article  MathSciNet  Google Scholar 

  11. Jin, B., Li, B., Zhou, Z.: An analysis of the Crank-Nicolson method for subdiffusion. IMA J. Numer. Anal. 38, 518–541 (2018)

    Article  MathSciNet  Google Scholar 

  12. Jin, B., Li, B., Zhou, Z.: Correction of high-order BDF convolution quadrature for fractional evolution equations. SIAM J. Sci. Comput. 39, A3129–A3152 (2017)

    Article  MathSciNet  Google Scholar 

  13. Jin, B., Li, B., Zhou, Z.: Discrete maximal regularity of time-stepping schemes for fractional evolution equations. Numer. Math. 138, 101–131 (2018)

    Article  MathSciNet  Google Scholar 

  14. Jin, B., Li, B., Zhou, Z.: Numerical analysis of nonlinear subdiffusion equations. SIAM J. Numer. Anal. 56, 1–23 (2018)

    Article  MathSciNet  Google Scholar 

  15. Li, B.: Analyticity, maximal regularity and maximum-norm stability of semi-discrete finite element solutions of parabolic equations in nonconvex polyhedra. Math. Comput. 88, 1–44 (2019)

    Article  MathSciNet  Google Scholar 

  16. Li, B.: Maximal regularity of multistep fully discrete finite element methods for parabolic equations. IMA J. Numer. Anal (to appear). arXiv:2005.01408

  17. Li, B., Ma, S.: A high-order exponential integrator for nonlinear parabolic equations with nonsmooth initial data. J. Sci. Comput. 87, 1–16 (2021)

    Article  MathSciNet  Google Scholar 

  18. Li, C., Cai, M.: High-order approximation to Caputo derivatives and Caputo-type advection-diffusion equations: revisited. Numer. Func. Anal. Opt. 38, 861–890 (2017)

    Article  MathSciNet  Google Scholar 

  19. Liao, H., McLean, W., Zhang, J.: A discrete gronwall inequality with applications to numerical schemes for subdiffusion problems. SIAM J. Numer. Anal. 57, 218–237 (2019)

    Article  MathSciNet  Google Scholar 

  20. Lin, Y., Xu, C.: Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 225, 1533–1552 (2007)

    Article  MathSciNet  Google Scholar 

  21. Liu, Y., Yin, B., Li, H., Zhang, Z.: The unified theory of shifted convolution quadrature for fractional calculus (2019). arXiv: 1908.01136

  22. Lubich, C.: Discretized fractional calculus. SIAM J. Math. Anal. 17, 704–719 (1986)

    Article  MathSciNet  Google Scholar 

  23. Mustapha, K., Mustapha, H.: A second-order accurate numerical method for a semilinear integro-differential equation with a weakly singular kernel. IMA J. Numer. Anal. 30, 555–578 (2010)

    Article  MathSciNet  Google Scholar 

  24. Oldham, K., Spanier, J.: The fractional calculus theory and applications of differentiation and integration to arbitrary order. Elsevier (1974)

    MATH  Google Scholar 

  25. Sakamoto, K., Yamamoto, M.: Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems. J. Math. Anal. Appl. 382, 426–447 (2011)

    Article  MathSciNet  Google Scholar 

  26. Schädle, A., López-Fernández, M., Lubich, C.: Fast and oblivious convolution quadrature. SIAM J. Sci. Comput. 28, 421–438 (2006)

    Article  MathSciNet  Google Scholar 

  27. Stynes, M.: Too much regularity may force too much uniqueness. Fract. Calc. Appl. Anal. 19, 1554–1562 (2016)

    Article  MathSciNet  Google Scholar 

  28. Stynes, M., O’Riordan, E., Gracia, J.: Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation. SIAM J. Numer. Anal. 55, 1057–1079 (2017)

  29. Sun, Z., Wu, X.: A fully discrete difference scheme for a diffusion-wave system. Appl. Numer. Math. 56, 193–209 (2006)

    Article  MathSciNet  Google Scholar 

  30. Thomée, V.: Galerkin finite element methods for parabolic problems, 2nd edn. Springer, Berlin (2006)

    MATH  Google Scholar 

  31. Tian, W., Zhou, H., Deng, W.: A class of second order difference approximations for solving space fractional diffusion equations. Math. Comput. 84, 1703–1727 (2015)

    Article  MathSciNet  Google Scholar 

  32. Wang, J., Wang, J., Yin, L.: A single-step correction scheme of Crank-Nicolson convolution quadrature for the subdiffusion equation. J. Sci. Comput. 87, 1–18 (2021)

    Article  MathSciNet  Google Scholar 

  33. Wang, Y., Yan, Y., Yan, Y., Pani, A.K.: Higher order time stepping methods for subdiffusion problems based on weighted and shifted Grünwald-Letnikov formulae with nonsmooth data. J. Sci. Comput. 83, 1–29 (2020)

    Article  Google Scholar 

  34. Yan, Y., Khan, M., Ford, N.: An analysis of the modified L1 scheme for time-fractional partial pifferential equations with nonsmooth data. SIAM J. Numer. Anal. 56, 210–227 (2018)

    Article  MathSciNet  Google Scholar 

  35. Yin, B., Liu, Y., Li, H.: Necessity of introducing non-integer shifted parameters by constructing high accuracy finite difference algorithms for a two-sided space-fractional advection-diffusion model. Appl. Math. Lett. 105, 106347 (2020)

    Article  MathSciNet  Google Scholar 

  36. Zeng, F., Li, C., Liu, F., Turner, I.: The use of finite difference/element approaches for solving the time-fractional subdiffusion equation. SIAM J. Sci. Comput. 35, A2976–A3000 (2013)

    Article  MathSciNet  Google Scholar 

  37. Zeng, F., Turner, I., Burrage, K., Karniadakis, G.E.: A new class of semi-implicit methods with linear complexity for nonlinear fractional differential equations. SIAM J. Sci. Comput. 40, A2986–A3011 (2018)

    Article  MathSciNet  Google Scholar 

  38. Zhang, H., Zeng, F., Jiang, X., Karniadakis, G.E.: Convergence analysis of the time-stepping numerical methods for time-fractional nonlinear subdiffusion equations (2020). arXiv:2007.07015

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Liu.

Additional information

Communicated by Mihaly Kovacs.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The work of the second author was supported in part by Grants NSFC 12061053, 11661058 and the NSF of Inner Mongolia 2020MS01003. The work of the third author was supported in part by the Grant NSFC 11761053. The work of the fourth author was supported in part by Grants NSFC 11871092 and NSAF U1930402.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, B., Liu, Y., Li, H. et al. Efficient shifted fractional trapezoidal rule for subdiffusion problems with nonsmooth solutions on uniform meshes. Bit Numer Math 62, 631–666 (2022). https://doi.org/10.1007/s10543-021-00890-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-021-00890-z

Keywords

Mathematics Subject Classification

Navigation