Skip to main content
Log in

Band-Toeplitz preconditioners for ill-conditioned Toeplitz systems

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

Preconditioning for Toeplitz systems has been an active research area over the past few decades. Along this line of research, circulant preconditioners have been recently proposed for the Toeplitz-like system arising from discretizing fractional diffusion equations. A common approach is to combine a circulant preconditioner with the preconditioned conjugate gradient normal residual (PCGRN) method for the coefficient system. In this work, instead of using PCGRN for the normal equation system, we propose a simple yet effective preconditioning approach for solving the original system using the preconditioned minimal residual (PMINRES) method that can achieve convergence guarantees depending only on eigenvalues. Namely, for a large class of ill-conditioned Toeplitz systems, we propose a number of preconditioners that attain the overall \({\mathcal {O}}(n\log {n})\) complexity. We first symmetrize the given Toeplitz system by using a permutation matrix and construct a band-Toeplitz plus circulant preconditioner for the modified system. Then, under certain assumptions, we show that the eigenvalues of the preconditioned system are clustered around \(\pm 1\) except a number of outliers and hence superlinear convergence rate of PMINRES can be achieved. Particularly, we indicate that our solver can be applied to solve certain fractional diffusion equations. An extension of this work to the block Toeplitz case is also included. Numerical examples are provided to demonstrate the effectiveness of our proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Avram, F.: On bilinear forms in Gaussian random variables and Toeplitz matrices. Probab. Theory Relat. Fields 79(1), 37–45 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bini, D., Di Benedetto, F.: New preconditioner for the parallel solution of positive definite Toeplitz systems. In: Algorithms and Architectures, SPAA ’90, pp. 220–223. ACM (1990)

  3. Bini, D., Favati, P.: On a matrix algebra related to the discrete Hartley transform. SIAM J. Matrix Anal. Appl. 14(2), 500–507 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  4. Böttcher, A., Grudsky, S.M.: Spectral Properties of Banded Toeplitz Matrices. Society for Industrial and Applied Mathematics, Philadelphia (2005)

    Book  MATH  Google Scholar 

  5. Capizzano, S.S., Tilli, P.: Extreme singular values and eigenvalues of non-Hermitian block Toeplitz matrices. J. Comput. Appl. Math. 108(1–2), 113–130 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chan, R., Ng, K.: Toeplitz preconditioners for Hermitian Toeplitz systems. Linear Algebra Appl. 190, 181–208 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chan, R.H.: Toeplitz preconditioners for Toeplitz systems with nonnegative generating functions. IMA J. Numer. Anal. 11(3), 333–345 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chan, R.H., Ng, M.K.: Conjugate gradient methods for Toeplitz systems. SIAM Rev. 38(3), 427–482 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chan, R.H., Ng, M.K., Yip, A.M.: The best circulant preconditioners for Hermitian Toeplitz systems II: the multiple-zero case. Numer. Math. 92(1), 17–40 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chan, R.H., Tang, P.T.P.: Fast band-Toeplitz preconditioners for Hermitian Toeplitz systems. SIAM J. Sci. Comput. 15(1), 164–171 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chan, R.H., Yip, A.M., Ng, N.K.: The best circulant preconditioners for Hermitian Toeplitz systems. SIAM J. Numer. Anal. 38(3), 876–896 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chan, T.F.: An optimal circulant preconditioner for Toeplitz systems. SIAM J. Sci. Stat. Comput. 9(4), 766–771 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  13. Di Benedetto, F., Fiorentino, G., Serra, S.: CG: preconditioning for Toeplitz matrices. Comput. Math. Appl. 25(6), 35–45 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  14. Donatelli, M., Garoni, C., Mazza, M., Serra-Capizzano, S., Sesana, D.: Preconditioned HSS method for large multilevel block Toeplitz linear systems via the notion of matrix-valued symbol. Numer. Linear Algebra Appl. 23(1), 83–119 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. Donatelli, M., Mazza, M., Serra-Capizzano, S.: Spectral analysis and structure preserving preconditioners for fractional diffusion equations. J. Comput. Phys. 307, 262–279 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  16. Donatelli, M., Neytcheva, M., Serra-Capizzano, S.: Canonical eigenvalue distribution of multilevel block Toeplitz sequences with non-Hermitian symbols. Oper. Theory: Adv. Appl. 221, 269–291 (2012)

    MathSciNet  MATH  Google Scholar 

  17. Elman, H.C., Silvester, D.J., Wathen, A.J.: Finite Elements and Fast Iterative Solvers. Numerical Mathematics and Scientific Computation, 2nd edn. Oxford University Press, Oxford (2014)

    Book  MATH  Google Scholar 

  18. Fang, Z.W., Ng, M.K., Sun, H.W.: Circulant preconditioners for a kind of spatial fractional diffusion equations. Numer. Algorithms 82(2), 729–747 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ferrari, P., Furci, I., Hon, S., Ayman Mursaleen, M., Serra-Capizzano, S.: The eigenvalue distribution of special 2-by-2 block matrix-sequences with applications to the case of symmetrized Toeplitz structures. SIAM J. Matrix Anal. Appl. 40(3), 1066–1086 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  20. Garoni, C., Serra-Capizzano, S.: Generalized Locally Toeplitz Sequences: Theory and Applications, vol. 2. Springer, Cham (2018)

    Book  MATH  Google Scholar 

  21. Hon, S.: Optimal preconditioners for systems defined by functions of Toeplitz matrices. Linear Algebra Appl. 548, 148–171 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hon, S.: Circulant preconditioners for functions of Hermitian Toeplitz matrices. J. Comput. Appl. Math. 352, 328–340 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hon, S., Ayman Mursaleen, M., Serra-Capizzano, S.: A note on the spectral distribution of symmetrized Toeplitz sequences. Linear Algebra Appl. 579(2–3), 32–50 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hon, S., Wathen, A.: Circulant preconditioners for analytic functions of Toeplitz matrices. Numer. Algorithms 79(4), 1211–1230 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  25. Huckle, T., Serra-Capizzano, S., Tablino-Possio, C.: Preconditioning strategies for non-Hermitian Toeplitz linear systems. Numer. Linear Algebra Appl. 12(2–3), 211–220 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  26. Jin, X.Q., Wei, Y.M.: A survey and some extensions of T. Chans preconditioner. Linear Algebra Appl. 428(2–3), 403–412 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  27. Lei, S.L., Sun, H.W.: A circulant preconditioner for fractional diffusion equations. J. Comput. Phys. 242, 715–725 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  28. Mazza, M., Pestana, J.: Spectral properties of flipped Toeplitz matrices and related preconditioning. BIT Numer. Math. 59(2), 463–482 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  29. Ng, M.: Iterative Methods for Toeplitz Systems. Numerical Mathematics and Scientific Computation. Oxford University Press, New York (2004)

    Google Scholar 

  30. Ng, M.: Band preconditioners for block-Toeplitz–Toeplitz-block systems. Linear Algebra Appl. 259(1–3), 307–327 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  31. Noutsos, D., Serra Capizzano, S., Vassalos, P.: Matrix algebra preconditioners for multilevel Toeplitz systems do not insure optimal convergence rate. Theor. Comput. Sci. 315(2–3), 557–579 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  32. Noutsos, D., Tachyridis, G.: Band Toeplitz preconditioners for non-symmetric real Toeplitz systems by preconditioned GMRES method. J. Comput. Appl. Math. 373, (2020)

  33. Noutsos, D., Vassalos, P.: New band Toeplitz preconditioners for ill-conditioned symmetric positive definite Toeplitz systems. SIAM J. Matrix Anal. Appl. 23(3), 728–743 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  34. Noutsos, D., Vassalos, P.: Superlinear convergence for PCG using band plus algebra preconditioners for Toeplitz systems. Comput. Math. Appl. 56(5), 1255–1270 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  35. Parter, S.V.: On the distribution of the singular values of Toeplitz matrices. Linear Algebra Appl. 80(C), 115–130 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  36. Pestana, J.: Preconditioners for symmetrized Toeplitz and multilevel Toeplitz matrices. SIAM J. Matrix Anal. Appl. 40(3), 870–887 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  37. Pestana, J., Wathen, A.J.: A preconditioned MINRES method for nonsymmetric Toeplitz matrices. SIAM J. Matrix Anal. Appl. 36(1), 273–288 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  38. Savage, L.J., Grenander, U., Szego, G.: Toeplitz Forms and Their Applications, vol. 53, 2nd edn. Chelsea Publishing Co., New York (1958)

    MATH  Google Scholar 

  39. Serra, S.: Preconditioning strategies for asymptotically ill-conditioned block Toeplitz systems. BIT 34(4), 579–594 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  40. Serra, S.: Optimal, quasi-optimal and superlinear band-Toeplitz preconditioners for asymptotically ill-conditioned positive definite Toeplitz systems. Math. Comput. 66(218), 651–666 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  41. Serra, S.: Asymptotic results on the spectra of block Toeplitz preconditioned matrices. SIAM J. Matrix Anal. Appl. 20(1), 31–44 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  42. Serra Capizzano, S., Tyrtyshnikov, E.: Any circulant-like preconditioner for multilevel matrices is not superlinear. SIAM J. Matrix Anal. Appl. 21(2), 431–439 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  43. Strang, G.: A proposal for Toeplitz matrix calculations. Stud. Appl. Math. 74(2), 171–176 (1986)

    Article  MATH  Google Scholar 

  44. Tyrtyshnikov, E.E., Zamarashkin, N.L.: Spectra of multilevel Toeplitz matrices: advanced theory via simple matrix relationships. Linear Algebra Appl. 270(1–3), 15–27 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  45. Tyrtyshnikov, E.E.: A unifying approach to some old and new theorems on distribution and clustering. Linear Algebra Appl. 232(1–3), 1–43 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  46. Wathen, A.J.: Preconditioning. Acta Numer. 24, 329–376 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  47. Xie, Z.J., Jin, X.W., Wei, Y.M.: A fast algorithm for solving circulant tensor systems. Linear Multilinear Algebra 65(9), 1894–1904 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  48. Xie, Z.J., Jin, X.Q., Zhao, Z.: A convergence analysis of the MINRES method for some Hermitian indefinite systems. East Asian J. Appl. Math. 7(4), 827–836 (2017)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous referees for their constructive comments that improved the original manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sean Hon.

Additional information

Communicated by Lothar Reichel.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The work of Hon was supported in part by the Hong Kong RGC under Grant 22300921 and a start-up allowance from the Croucher Foundation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hon, S., Serra-Capizzano, S. & Wathen, A. Band-Toeplitz preconditioners for ill-conditioned Toeplitz systems. Bit Numer Math 62, 465–491 (2022). https://doi.org/10.1007/s10543-021-00889-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-021-00889-6

Keywords

Mathematics Subject Classification

Navigation