Skip to main content
Log in

Band-times-circulant preconditioners for non-symmetric Toeplitz systems

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

In this paper we study \(n\times n\) non-symmetric, real Toeplitz systems of the form \(T_n(f)x = b\), where the generating function of the Toeplitz matrix f is known a priori. We study the behavior of a specific circulant preconditioner and we also propose a preconditioner arising from the combination of a band Toeplitz matrix and circulant matrices, for ill-conditioned Toeplitz systems. For the solution of the system we use Krylov subspace methods and more specifically the Conjugate Gradient method for the corresponding preconditioned system of the normal equations and the Preconditioned Generalized Minimal Residual method. We prove theoretical results, which guarantee the efficiency of the proposed preconditioner either when f is continuous or it is piecewise continuous. We emphasize that f may have zeros in \((-\pi ,\pi ]\). Finally, we present various numerical experiments, where the efficiency of the proposed preconditioning technique is shown, since we get the solution of the preconditioned system in a small number of iterations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Axelsson, O.: Conjugate gradient type methods for unsymmetric and inconsistent systems of linear equations. Linear Algebra Appl. 29, 1–16 (1980). https://doi.org/10.1016/0024-3795(80)90226-8

    Article  MathSciNet  MATH  Google Scholar 

  2. Bendixson, I.: Sur les racines d’une équation fondamentale. Acta Math. 25, 359–365 (1902). https://doi.org/10.1007/BF02419030

    Article  MathSciNet  MATH  Google Scholar 

  3. Chan, R.H., Ng, M.K.: Conjugate gradient methods for Toeplitz systems. SIAM Rev. 38(3), 427–482 (1996). https://doi.org/10.1137/S0036144594276474

    Article  MathSciNet  MATH  Google Scholar 

  4. Chan, R.H., Yeung, M.C.: Circulant preconditioners for complex Toeplitz matrices. SIAM J. Numer. Anal. 30(4), 1193–1207 (1993). https://doi.org/10.1137/0730062

    Article  MathSciNet  MATH  Google Scholar 

  5. Chan, T.F.: An optimal circulant preconditioner for Toeplitz systems. SIAM J. Sci. Statist. Comput. 9(4), 766–771 (1988). https://doi.org/10.1137/0909051

    Article  MathSciNet  MATH  Google Scholar 

  6. Di Benedetto, F., Fiorentino, G., Serra, S.: CG preconditioning for Toeplitz matrices. Comput. Math. Applic. 25(6), 35–45 (1993). https://doi.org/10.1016/0898-1221(93)90297-9

    Article  MathSciNet  MATH  Google Scholar 

  7. Di Benedetto, F., Serra Capizzano, S.: A unifying approach to abstract matrix algebra preconditioning. Numer. Math. 82(1), 57–90 (1999)

    Article  MathSciNet  Google Scholar 

  8. Duffy, D.J.: Finite Difference Methods in Financial Engineering: a Partial Differential Equation approach. John Wiley, Hoboken (2013)

    Google Scholar 

  9. Ferrari, P., Furci, I., Hon, S., Mursaleen, M.A., Serra-Capizzano, S.: The eigenvalue distribution of special 2-by-2 block matrix-sequences with applications to the case of symmetrized Toeplitz structures. SIAM J. Matrix Anal. Appl. 40(3), 1066–1086 (2019). https://doi.org/10.1137/18M1207399

    Article  MathSciNet  MATH  Google Scholar 

  10. Garren, K.R.: Bounds for the Eigenvalues of a Matrix. In: Dissertations, Theses, and Masters Projects. Paper 1539624585 (1965). https://doi.org/10.21220/s2-p2tn-7046

  11. Gmati, N., Philippe, B.: Comments on the GMRES convergence for preconditioned systems. In: International Conference on Large-Scale Scientific Computing, pp. 40–51. Springer (2007). https://doi.org/10.1007/978-3-540-78827-0_4

  12. Higham, N.J.: Functions of Matrices: Theory and Computation. SIAM, Philadelphia (2008)

    Book  Google Scholar 

  13. Hirsch, M.: Sur les racines d’une équation fondamentale. Acta Math. 25, 367–370 (1902). https://doi.org/10.1007/BF02419031

    Article  MathSciNet  MATH  Google Scholar 

  14. Hon, S., Wathen, A.: Circulant preconditioners for analytic functions of Toeplitz matrices. Numer. Algor. 79(4), 1211–1230 (2018). https://doi.org/10.1007/s11075-018-0481-7

    Article  MathSciNet  MATH  Google Scholar 

  15. Horn, R.A., Johnson, C.R.: Topics in Matrix Analysis. Cambridge University Press, Cambridge (1994)

    MATH  Google Scholar 

  16. Kressner, D., Luce, R.: Fast computation of the matrix exponential for a Toeplitz matrix. SIAM J. Matrix Anal. Appl. 39(1), 23–47 (2018). https://doi.org/10.1137/16M1083633

    Article  MathSciNet  MATH  Google Scholar 

  17. Nachtigal, N.M., Reddy, S.C., Trefethen, L.N.: How fast are nonsymmetric matrix iterations? SIAM J. Matrix Anal. Appl. 13(3), 778–795 (1992). https://doi.org/10.1137/0613049

    Article  MathSciNet  MATH  Google Scholar 

  18. Ng, M.: Iterative Methods for Toeplitz Systems. Oxford University Press, New York (2004)

    MATH  Google Scholar 

  19. Noschese, S., Pasquini, L., Reichel, L.: Tridiagonal Toeplitz matrices: properties and novel applications. Numer. Linear Algebra Appl. 20(2), 302–326 (2013). https://doi.org/10.1002/nla.1811

    Article  MathSciNet  MATH  Google Scholar 

  20. Noutsos, D., Serra-Capizzano, S., Vassalos, P.: Spectral equivalence and matrix algebra preconditioners for multilevel Toeplitz systems: a negative result. Contemp. Math. 323, 313–322 (2003)

    Article  MathSciNet  Google Scholar 

  21. Noutsos, D., Serra-Capizzano, S., Vassalos, P.: Matrix algebra preconditioners for multilevel Toeplitz systems do not insure optimal convergence rate. Theor. Comput. Sci. 315(2–3), 557–579 (2004). https://doi.org/10.1016/j.tcs.2004.01.007

    Article  MathSciNet  MATH  Google Scholar 

  22. Noutsos, D., Tachyridis, G.: Band Toeplitz preconditioners for non-symmetric real Toeplitz systems by preconditioned GMRES method. J. Comput. Appl. 373, 112250 (2020). https://doi.org/10.1016/j.cam.2019.04.030

    Article  MathSciNet  MATH  Google Scholar 

  23. Noutsos, D., Vassalos, P.: Superlinear convergence for PCG using band plus algebra preconditioners for Toeplitz systems. Comput. Math. Appl. 56, 1255–1270 (2008). https://doi.org/10.1016/j.camwa.2008.02.046

    Article  MathSciNet  MATH  Google Scholar 

  24. Noutsos, D., Vassalos, P.: Band plus algebra preconditioners for two-level Toeplitz systems. BIT Numer. Math. 51(3), 695–719 (2011). https://doi.org/10.1007/s10543-011-0314-8

    Article  MathSciNet  MATH  Google Scholar 

  25. Pestana, J., Wathen, A.J.: A preconditioned minres method for nonsymmetric Toeplitz matrices. SIAM J. Matrix Anal. Appl. 36(1), 273–288 (2015). https://doi.org/10.1137/140974213

    Article  MathSciNet  MATH  Google Scholar 

  26. Potts, D., Steidl, G.: Optimal trigonometric preconditioners for nonsymmetric Toeplitz systems. Linear Algebra Appl. 281(1–3), 265–292 (1998). https://doi.org/10.1016/S0024-3795(98)10042-3

    Article  MathSciNet  MATH  Google Scholar 

  27. Potts, D., Steidl, G.: Preconditioners for ill-conditioned Toeplitz matrices. BIT Numer. Math. 39(3), 513–533 (1999). https://doi.org/10.1023/A:1022322820082

    Article  MathSciNet  MATH  Google Scholar 

  28. Saad, Y., Schultz, M.H.: GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Statist. Comp. 7(3), 856–869 (1986). https://doi.org/10.1137/0907058

    Article  MathSciNet  MATH  Google Scholar 

  29. Sachs, E., Strauss, A.: Efficient solution of a partial integro-differential equation in finance. Appl. Numer. Math. 58(11), 1687–1703 (2008). https://doi.org/10.1016/j.apnum.2007.11.002

    Article  MathSciNet  MATH  Google Scholar 

  30. Serra-Capizzano, S.: Spectral behavior of matrix sequences and discretized boundary value problems. Linear Algebra Appl. 337(1–3), 37–78 (2001). https://doi.org/10.1016/S0024-3795(01)00335-4

    Article  MathSciNet  MATH  Google Scholar 

  31. Serra-Capizzano, S., Tyrtyshnikov, E.: Any circulant-like preconditioner for multilevel matrices is not superlinear. SIAM J. Matrix Anal. Appl. 21(2), 431–439 (2000). https://doi.org/10.1137/S0895479897331941

    Article  MathSciNet  MATH  Google Scholar 

  32. Sohrab, H.H.: Basic Real Analysis. Birkhäuser, New York (2003)

    Book  Google Scholar 

  33. Strang, G.: A proposal for Toeplitz matrix calculations. Stud. Appl. Math. 74(2), 171–176 (1986). https://doi.org/10.1002/sapm1986742171

    Article  MATH  Google Scholar 

  34. Tyrtyshnikov, E.E.: Circulant preconditioners with unbounded inverses. Linear Algebra Appl. 216, 1–23 (1995). https://doi.org/10.1016/0024-3795(93)00092-E

    Article  MathSciNet  MATH  Google Scholar 

  35. Tyrtyshnikov, E.E.: A unifying approach to some old and new theorems on distribution and clustering. Linear Algebra Appl. 232, 1–43 (1996). https://doi.org/10.1016/0024-3795(94)00025-5

    Article  MathSciNet  MATH  Google Scholar 

  36. Widom, H.: Hankel matrices. Trans. Am. Math. Soc. 121(1), 1–35 (1966)

    Article  MathSciNet  Google Scholar 

  37. Yeung, M.C., Chan, R.H.: Circulant preconditioners for Toeplitz matrices with piecewise continuous generating functions. Math. Comput. 61(204), 701–718 (1993). https://doi.org/10.2307/2153248

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous referees for the constructive comments that improved the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitrios Noutsos.

Additional information

Communicated by Michiel E. Hochstenbach.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Part of this research is co-financed by Greece and the European Union (European Social Fund-ESF) through the Operational Programme “Human Resources Development, Education and Lifelong Learning 2014–2020” in the context of the project “Krylov subspace methods and Perron-Frobenius theory” (MIS 5047643).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Noutsos, D., Tachyridis, G. Band-times-circulant preconditioners for non-symmetric Toeplitz systems. Bit Numer Math 62, 561–590 (2022). https://doi.org/10.1007/s10543-021-00883-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-021-00883-y

Keywords

Mathematics Subject Classification

Navigation