Skip to main content
Log in

Arbitrary high order A-stable and B-convergent numerical methods for ODEs via deferred correction

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

This paper presents a sequence of deferred correction (DC) schemes built recursively from the implicit midpoint scheme for the numerical solution of general first order ordinary differential equations (ODEs). It is proven that each scheme is A-stable, satisfies a B-convergence property, and that the correction on a scheme DC2j of order 2j of accuracy leads to a scheme DC2j + 2 of order 2j + 2. The order of accuracy is guaranteed by a deferred correction condition. Numerical experiments with standard stiff and non-stiff ODEs are performed with the DC2, ..., DC10 schemes. The results show a high accuracy of the method. The theoretical orders of accuracy are achieved together with a satisfactory stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Auzinger, W.: Defect correction methods. In: Engquist, B. (ed.) Encyclopedia of Applied and Computational Mathematics, pp. 323–332. Springer, Berlin (2015)

    Chapter  Google Scholar 

  2. Christlieb, A., Ong, B., Qiu, J.M.: Integral deferred correction methods constructed with high order Runge–Kutta integrators. Math. Comput. 79, 761–783 (2010)

    Article  MathSciNet  Google Scholar 

  3. Chung, T.: Computational Fluid Dynamics, 2nd edn. Cambridge University Press, Cambridge (2010)

    Book  Google Scholar 

  4. Dahlquist, G., Björck, A.K.: Numerical Methods in Scientific Computing, vol. I. SIAM, Philadelphia (2008)

    MATH  Google Scholar 

  5. Dahlquist, G.G.: A special stability problem for linear multistep methods. Nordisk Tidskr. Informationsbehandling (BIT) 3, 27–43 (1963)

    MathSciNet  MATH  Google Scholar 

  6. Daniel, J.W., Pereyra, V., Schumaker, L.L.: Iterated deferred corrections for initial value problems. Acta Cient. Venezolana 19, 128–135 (1968)

    MathSciNet  Google Scholar 

  7. Dutt, A., Greengard, L., Rokhlin, V.: Spectral deferred correction methods for ordinary differential equations. BIT 40, 241–266 (2000)

    Article  MathSciNet  Google Scholar 

  8. Enright, W.H., Hull, T., Lindberg, B.: Comparing numerical methods for stiff systems of O.D.E:s. BIT 15, 10–48 (1975)

    Article  Google Scholar 

  9. Frank, R., Schneid, J., Ueberhuber, C.W.: The concept of B-convergence. SIAM J. Numer. Anal. 18(5), 753–780 (1981)

    Article  MathSciNet  Google Scholar 

  10. Gustafsson, B., Kress, W.: Deferred correction methods for initial value problems. BIT 41, 986–995 (2001)

    Article  MathSciNet  Google Scholar 

  11. Hairer, E., Wanner, G.: Solving Ordinary Differential Equations. II. Stiff and Differential-Algebraic Problems, vol. 14. Springer, Berlin (1991)

    MATH  Google Scholar 

  12. Hansen, A.C., Strain, J.: On the order of deferred correction. Appl. Numer. Math. 61, 961–973 (2011)

    Article  MathSciNet  Google Scholar 

  13. Hildebrand, F.B.: Introduction to Numerical Analysis. McGraw-Hill, New York (1974)

    MATH  Google Scholar 

  14. Hull, T.E., Enright, W.H., Fellen, B.M., Sedgwick, A.E.: Comparing numerical methods for ordinary differential equations. SIAM J. Numer. Anal. 9, 603–637 (1972)

    Article  MathSciNet  Google Scholar 

  15. Isaacson, E., Keller, H.B.: Analysis of Numerical Methods. Wiley, New York (1966)

    MATH  Google Scholar 

  16. Karouma, A.: A class of contractivity preserving Hermite–Birkhoff–Taylor high order time discretization methods. Ph.D. thesis, Université d’Ottawa/University of Ottawa (2015)

  17. Koyaguerebo-Imé, S.C.E., Bourgault, Y.: Finite difference and numerical differentiation: General formulae from deferred corrections. arXiv preprint arXiv:2005.11754 (2020)

  18. Koyaguerebo-Imé, S.C.R., Bourgault, Y.: Arbitrary high-order unconditionally stable methods for reaction-diffusion equations via deferred correction: Case of the implicit midpoint rule. arXiv:2006.02962v2 (2020)

  19. Kraaijevanger, J.: B-convergence of the implicit midpoint rule and the trapezoidal rule. BIT 25(4), 652–666 (1985)

    Article  MathSciNet  Google Scholar 

  20. Kress, W., Gustafsson, B.: Deferred correction methods for initial boundary value problems. J. Sci. Comput. 17(1–4), 241–251 (2002)

    Article  MathSciNet  Google Scholar 

  21. Kushnir, D., Rokhlin, V.: A highly accurate solver for stiff ordinary differential equations. SIAM J. Sci. Comput. 34, A1296–A1315 (2012)

    Article  MathSciNet  Google Scholar 

  22. Quarteroni, A., Sacco, R., Saleri, F.: Numerical Mathematics, vol. 37, 2nd edn. Springer, Berlin (2007)

    Book  Google Scholar 

  23. Schild, K.H.: Gaussian collocation via defect correction. Numer. Math. 58, 369–386 (1990)

    Article  MathSciNet  Google Scholar 

  24. Shampine, L.F.: Evaluation of a test set for stiff ODE solvers. ACM Trans. Math. Softw. 7, 409–420 (1981)

    Article  MathSciNet  Google Scholar 

  25. Spijker, M.N.: Stiffness in numerical initial-value problems. J. Comput. Appl. Math. 72, 393–406 (1996)

    Article  MathSciNet  Google Scholar 

  26. Stewart, K.: Avoiding stability-induced inefficiencies in BDF methods. J. Comput. Appl. Math. 29, 357–367 (1990)

    Article  MathSciNet  Google Scholar 

  27. Tuenter, H.: The Frobenius problem, sums of powers of integers, and recurrences for the Bernoulli numbers. J. Number Theory 117, 376–386 (2006)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yves Bourgault.

Additional information

Communicated by Antonella Zanna Munthe-Kaas.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The authors would like to acknowledge the financial support of the Discovery Grant Program of the Natural Sciences and Engineering Research Council of Canada (NSERC) and a scholarship to the first author from the NSERC CREATE program “Génie par la Simulation”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koyaguerebo-Imé, SC.E.R., Bourgault, Y. Arbitrary high order A-stable and B-convergent numerical methods for ODEs via deferred correction. Bit Numer Math 62, 139–170 (2022). https://doi.org/10.1007/s10543-021-00875-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-021-00875-y

Keywords

Mathematics Subject Classification

Navigation