Skip to main content
Log in

A Riemannian under-determined BFGS method for least squares inverse eigenvalue problems

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

This paper is concerned with the parameterized least squares inverse eigenvalue problems for the case that the number of parameters to be constructed is greater than the number of prescribed realizable eigenvalues. Intrinsically, this is a specific problem of finding a zero of an under-determined nonlinear map defined between a Riemannian product manifold and a matrix space. To solve this problem, we propose a Riemannian under-determined BFGS algorithm with a specialized update formula for iterative linear operators, and an Armijo type line search is used. Global convergence properties of this algorithm are established under some mild assumptions. In addition, we also generalize a Riemannian inexact Newton method for solving this problem. Specially, the explicit form of the inverse of the linear operator corresponding to the perturbed normal Riemannian Newton equation is obtained, which improves the efficiency of Riemannian inexact Newton method. Numerical experiments are provided to illustrate the efficiency of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Absil, P.-A., Mahony, R., Sepulchre, R.: Optimization Algorithms on Matrix Manifolds. Princeton University Press, Princeton (2008)

    Book  Google Scholar 

  2. Aishima, K.: A quadratically convergent algorithm based on matrix equations for inverse eigenvalue problems. Linear Algebra Appl. 542, 310–333 (2018)

    Article  MathSciNet  Google Scholar 

  3. Aishima, K.: A quadratically convergent algorithm for inverse eigenvalue problems with multiple eigenvalues. Linear Algebra Appl. 549, 30–52 (2018)

    Article  MathSciNet  Google Scholar 

  4. Bai, Z.J.: Inexact Newton methods for inverse eigenvalue problems. Appl. Math. Comput. 172, 682–689 (2006)

    MathSciNet  MATH  Google Scholar 

  5. Bai, Z.J., Chan, R.H., Morini, B.: An inexact Cayley transform method for inverse eigenvalue problems. Inverse Probl. 20, 1675–1689 (2004)

    Article  MathSciNet  Google Scholar 

  6. Bao, J.F., Li, C., Shen, W.P., Yao, J.C., Guu, S.M.: Approximate Gauss-Newton methods for solving underdetermined nonlinear least squares problems. Appl. Numer. Math. 111, 92–110 (2017)

    Article  MathSciNet  Google Scholar 

  7. Chan, R.H., Xu, S.F., Zhou, H.M.: On the convergence of a quasi-Newton method for inverse eigenvalue problem. SIAM J. Numer. Anal. 36, 436–441 (1999)

    Article  MathSciNet  Google Scholar 

  8. Chen, X.J., Yamamotob, T.: Newton-like methods for solving underdetermined nonlinear equations with nondifferentiable terms. J. Comput. Appl. Math. 59, 311–324 (1994)

    Article  MathSciNet  Google Scholar 

  9. Chen, X.S., Wen, C.T., Sun, H.W.: Two-step Newton-type methods for solving inverse eigenvalue problems, Numer. Linear Algebra Appl., e2185 (2018)

  10. Chen, X.Z., Chu, M.T.: On the least-squares solution of inverse eigenvalue problems. SIAM J. Numer. Anal. 33, 2417–2430 (1996)

    Article  MathSciNet  Google Scholar 

  11. Chiang, C.Y., Lin, M.M., Jin, X.Q.: Riemannian inexact Newton method for structured inverse eigenvalue and singular value problems. BIT 59, 675–694 (2019)

    Article  MathSciNet  Google Scholar 

  12. Chu, M.T.: Inverse eigenvalue problems. SIAM Rev. 40, 1–39 (1998)

    Article  MathSciNet  Google Scholar 

  13. Chu, M.T., Golub, G.H.: Structured inverse eigenvalue problems. Acta Numer. 11, 1–71 (2002)

    Article  MathSciNet  Google Scholar 

  14. Chu, M.T., Golub, G.H.: Inverse Eigenvalue Problems: Theory, Algorithms, and Applications. Oxford University Press, Oxford, UK (2005)

    Book  Google Scholar 

  15. Datta, B.N.: Numerical Methods for Linear Control Systems: Design and Analysis. Elsevier, London, UK (2003)

    Google Scholar 

  16. Eisenstat, S.C., Walker, H.F.: Globally convergent inexact Newton methods. SIAM J. Optim. 4, 392–422 (1994)

    Article  MathSciNet  Google Scholar 

  17. Echebest, N., Schuverdt, M.L., Vignau, R.P.: Two derivative-free methods for solving underdetermined nonlinear systems of equations. Comput. Appl. Math. 30, 217–245 (2011)

    MathSciNet  MATH  Google Scholar 

  18. Echebest, N., Schuverdt, M.L., Vignau, R.P.: A derivative-free method for solving box-constrained underdetermined nonlinear systems of equations. Appl. Math. Comput. 219, 3198–3208 (2012)

    MathSciNet  MATH  Google Scholar 

  19. Francisco, J.B., Krejić, N., Martínez, J.M.: An interior point method for solving box-constrained underdetermined nonlinear systems. J. Comput. Appl. Math. 177, 67–88 (2005)

    Article  MathSciNet  Google Scholar 

  20. Friedland, S., Nocedal, J., Overton, M.: The formulation and analysis of numerical methods for inverse eigenvalue problems. SIAM J. Numer. Anal. 24, 634–667 (1987)

    Article  MathSciNet  Google Scholar 

  21. Friswell, M.I., Mottershead, J.E.: Finite Element Model Updating in Structural Dynamics. Kluwer Academic Publishers, Dordrecht, NED (1995)

    Book  Google Scholar 

  22. Gladwell, G.M.L.: Inverse Problems in Vibration. Kluwer Academic Publishers, Dordrecht, NED (2004)

    MATH  Google Scholar 

  23. Golub, G.H., Van Loan, C.F.: Matrix Computations, 4th edn. Johns Hopkins University Press, Baltimore (2013)

    MATH  Google Scholar 

  24. Hager, W.W.: Updating the inverse of a matrix. SIAM Rev. 31, 221–239 (1989)

    Article  MathSciNet  Google Scholar 

  25. Jin, X.Q., Vong, S.W.: An Introduction to Applied Matrix Analysis. Higher Education Press, World Scientific, Beijing, Singapore (2016)

    Book  Google Scholar 

  26. Lee, J.M.: Riemannian Manifolds: An Introduction to Curvature. Springer, New York (1997)

    Book  Google Scholar 

  27. Luenberger, D.G.: Optimization by Vector Space Methods. Wiley, New York (1969)

    MATH  Google Scholar 

  28. Ma, R.R., Bai, Z.J.: A Riemannian inexact Newton-CG method for stochastic inverse singular value problems, Numer. Linear Algebra Appl., e2336 (2020)

  29. Martinez, J.M.: Quasi-Newton methods for solving underdetermined nonlinear simultaneous equations. J. Comput. Appl. Math. 34, 171–190 (1991)

    Article  MathSciNet  Google Scholar 

  30. Nocedal, J., Wright, S.J.: Numerical Optimization. Springer, New York (1999)

  31. Shen, W.P., Li, C., Jin, X.Q.: A Ulm-like method for inverse eigenvalue problems. Appl. Numer. Math. 61, 356–367 (2011)

    Article  MathSciNet  Google Scholar 

  32. Shen, W.P., Li, C., Jin, X.Q.: An inexact Cayley transform method for inverse eigenvalue problems with multiple eigenvalues. Inverse Probl. 31, (2015)

  33. Shen, W.P., Li, C., Yao, J.C.: Convergence analysis of Newton-like methods for inverse eigenvalue problems with multiple eigenvalues. SIAM J. Numer. Anal. 54, 2938–2950 (2016)

    Article  MathSciNet  Google Scholar 

  34. Shen, W.P., Li, C., Yao, J.C.: Approximate Cayley transform methods for inverse eigenvalue problems and convergence analysis. Linear Algebra Appl. 523, 187–219 (2017)

    Article  MathSciNet  Google Scholar 

  35. Simons, J.P.: Inexact Newton methods applied to under-determined systems. Department of Mathematical Science, Worcester Polytechnic Institute (2006). (PhD thesis)

  36. Sun, D.F., Sun, J.: Strong semismoothness of eigenvalues of symmetric matrices and its application to inverse eigenvalue problems. SIAM J. Numer. Anal. 40, 2352–2367 (2003)

    Article  MathSciNet  Google Scholar 

  37. Walker, H.F., Watson, L.T.: Least-change secant update methods for under-determined systems. SIAM J. Numer. Anal. 27, 1227–1262 (1990)

    Article  MathSciNet  Google Scholar 

  38. Wang, Y., Zhao, Z., Bai, Z.J.: Riemannian Newton-CG methods for constructing a positive doubly stochastic matrix from spectral data. Inverse Probl. 36, 115006 (2020)

    Article  MathSciNet  Google Scholar 

  39. Wang, Z.B., Vong, S.W.: A Guass–Newton-like method for inverse eigenvalue problems. Inter. J. Comput. Math. 90, 1435–1447 (2013)

    Article  MathSciNet  Google Scholar 

  40. Wen, C.T., Chen, X.S., Sun, H.W.: A two-step inexact Newton-Chebyshev-like method for inverse eigenvalue problems. Linear Algebra Appl. 585, 241–262 (2020)

    Article  MathSciNet  Google Scholar 

  41. Xu, S.F.: An Introduction to Inverse Algebraic Eigenvalue Problems. Peking University Press, Friedr. Vieweg & Sohn, Beijing, Braunschweig (1998)

    MATH  Google Scholar 

  42. Yao, T.T., Bai, Z.J., Jin, X.Q., Zhao, Z.: A geometric Gauss-Newton method for least squares inverse eigenvalue problems. BIT 60, 825–852 (2020)

    Article  MathSciNet  Google Scholar 

  43. Zhao, Z., Bai, Z.J., Jin, X.Q.: A Riemannian inexact Newton-CG method for constructing a nonnegative matrix with prescribed realizable spectrum. Numer. Math. 140, 827–855 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We are very grateful to the two anonymous referees for their valuable comments on the paper, which have considerably improved the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teng-Teng Yao.

Additional information

Communicated by Daniel Kressner.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by NSFC Nos. 11601112, 11671337, 11701514. The research of Z. Zhao was partially supported by the Zhejiang Provincial Natural Science Foundation of China (No. LY21A010010) and the Fundamental Research Funds for the Provincial Universities of Zhejiang (No. GK199900299012-006). The research of X. Q. Jin was supported by the research grants MYRG2019-00042-FST from University of Macau and 0014/2019/A from FDCT of Macao. The research of T. T. Yao was supported by the Zhejiang Provincial Natural Science Foundation of China (No. LY21A010004).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Z., Jin, XQ. & Yao, TT. A Riemannian under-determined BFGS method for least squares inverse eigenvalue problems. Bit Numer Math 62, 311–337 (2022). https://doi.org/10.1007/s10543-021-00874-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-021-00874-z

Keywords

Mathematics Subject Classification

Navigation