Skip to main content
Log in

An exponential integrator sine pseudospectral method for the generalized improved Boussinesq equation

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

A Deuflhard-type exponential integrator sine pseudospectral (DEI-SP) method is proposed and analyzed for solving the generalized improved Boussinesq (GIBq) equation. The numerical scheme is based on a second-order exponential integrator for time integration and a sine pseudospectral discretization in space. Rigorous analysis and abundant experiments show that the method converges quadratically and spectrally in time and space, respectively. Finally the DEI-SP method is applied to investigate the complicated and interesting long-time dynamics of the GIBq equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Adams, R.A., Fournier, J.: Sobolev Spaces, vol. 140. Academic Press, Berlin (2003)

    MATH  Google Scholar 

  2. Berezin, Y.A., Karpman, V.I.: Nonlinear evolution of disturbances in plasmas and other dispersive media. Soviet Phys. JETP 24, 1049–1055 (1967)

    Google Scholar 

  3. Bogolubsky, I.L.: Some examples of inelastic soliton interaction. Comput. Phys. Commun. 13, 149–155 (1977)

    Article  Google Scholar 

  4. Borluk, H., Muslu, G.M.: A Fourier pseudospectral method for a generalized improved Boussinesq equation. Numer. Methods Partial Differ. Equ. 31, 995–1008 (2015)

    Article  MathSciNet  Google Scholar 

  5. Boussinesq, M.J.: Théorie de l’intumescence liquide, appelée onde solitaire ou de translation, se propageant dans un canal rectangulaire. CR Acad. Sci. Paris 72, 755–759 (1871)

    MATH  Google Scholar 

  6. Boussinesq, M.J.: Théorie des ondes et des remous qui se propagent le long d’un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond. J. Math. Pures Appl. 17, 5–108 (1872)

    MathSciNet  MATH  Google Scholar 

  7. Bratsos, A.G.: A second order numerical scheme for the improved Boussinesq equation. Phys. Lett. A 370, 145–147 (2007)

    Article  MathSciNet  Google Scholar 

  8. Bratsos, A.G.: A predictor–corrector scheme for the improved Boussinesq equation. Chaos Soliton Fract. 40, 2083–2094 (2009)

    Article  MathSciNet  Google Scholar 

  9. Cerpa, E., Crépeau, E.: On the controllability of the improved Boussinesq equation. SIAM J. Control Optim. 56, 3035–3049 (2018)

    Article  MathSciNet  Google Scholar 

  10. Chartier, Ph, Méhats, F., Thalhammer, M., Zhang, Y.: Improved error estimates for splitting methods applied to highly-oscillatory nonlinear Schrödinger equations. Math. Comput. 85, 2863–2885 (2016)

    Article  Google Scholar 

  11. Chen, G.W., Wang, S.B.: Existence and nonexistence of global solutions for the generalized IMBq equation. Nonlinear Anal. 36, 961–980 (1999)

    Article  MathSciNet  Google Scholar 

  12. Christiansen, P.L., Muto, V., Soerensen, M.P.: Solitary waves on nonlinear elastic rods. North-Holland Ser. Appl. Math. Mech. 35, 167–172 (1989)

    Article  Google Scholar 

  13. Deuflhard, P.: A study of extrapolation methods based on multistep schemes without parasitic solutions. ZAMP 30, 177–189 (1979)

    MathSciNet  MATH  Google Scholar 

  14. El-Zoheiry, H.: Numerical study of the improved Boussinesq equation. Chaos Soliton Fract. 14, 377–384 (2002)

    Article  MathSciNet  Google Scholar 

  15. Frutos, J.D., Ortega, T., Sanz-Serna, J.M.: Pseudospectral method for the good Boussinesq equation. Math. Comput. 57, 109–122 (1991)

    MathSciNet  MATH  Google Scholar 

  16. Irk, D., Dag, I.: Numerical simulations of the improved Boussinesq equation. Numer. Methods Partial Differ. Equ. 26, 1316–1327 (2010)

    Article  MathSciNet  Google Scholar 

  17. Kishimoto, N.: Sharp local well-posedness for the “good” Boussinesq equation. J. Differ. Equ. 254, 2393–2433 (2013)

  18. Korteweg, D., De Vries, G.: On the change of form of long waves advancing in a rectangular channel, and a new type of long stationary wave. Phil. Mag. 39, 422–443 (1895)

    Article  Google Scholar 

  19. Lin, Q., Wu, Y.H., Loxton, R., Lai, S.: Linear B-spline finite element method for the improved Boussinesq equation. J. Comput. Appl. Math. 224, 658–667 (2009)

    Article  MathSciNet  Google Scholar 

  20. Makhankov, V.G.: Dynamics of classical solitons (in non-integrable systems). Phys. Rep. 35, 1–128 (1978)

    Article  MathSciNet  Google Scholar 

  21. Manoranjan, V.S., Mitchell, A.R., Morris, J.L.: Numerical solutions of the good Boussinesq equation. SIAM J. Sci. Comput. 5, 946–957 (1984)

    Article  MathSciNet  Google Scholar 

  22. Mohebbi, A.: Solitary wave solutions of the nonlinear generalized Pochhammer–Chree and regularized long wave equations. Nonlinear Dyn. 70, 2463–2474 (2012)

    Article  MathSciNet  Google Scholar 

  23. Oh, S., Stefanov, A.: Improved local well-posedness for the periodic “good” Boussinesq equation. J. Differ. Equ. 254, 4047–4065 (2013)

  24. Ostermann, A., Su, C.: Two exponential-type integrators for the “good” Boussinesq equation. Numer. Math. 143, 683–712 (2019)

  25. Shokri, A., Dehghan, M.: A not-a-knot meshless method using radial basis functions and predictor–corrector scheme to the numerical solution of improved Boussinesq equation. Comput. Phys. Commun. 181, 1990–2000 (2010)

    Article  MathSciNet  Google Scholar 

  26. Soerensen, M.P., Christiansen, P.L., Lomdahl, P.S.: Solitary waves on nonlinear elastic rods I. J. Accoust. Soc. Am. 76, 871–879 (1984)

    Article  MathSciNet  Google Scholar 

  27. Su, C., Yao, W.: A Deuflhard-type exponential integrator Fourier pseudo-spectral method for the “Good” Boussinesq equation. J. Sci. Comput. 83, 4, (2020). https://doi.org/10.1007/s10915-020-01192-2

  28. Wang, Q., Zhang, Z., Zhang, X., Zhu, Q.: Energy-preserving finite volume element method for the improved Boussinesq equation. J. Comput. Phys. 270, 58–69 (2014)

    Article  MathSciNet  Google Scholar 

  29. Xu, Z., Dong, X., Zhao, X.: On time-splitting pseudospectral discretization for nonlinear Klein–Gordon equation in nonrelativistic limit regime. Commun. Comput. Phys. 16, 440–466 (2014)

    Article  MathSciNet  Google Scholar 

  30. Yan, J., Zhang, Z., Zhao, T., Liang, D.: High-order energy-preserving schemes for the improved Boussinesq equation. Numer. Methods Partial Differ. Equ. 34(4), 1145–1165 (2018)

    Article  MathSciNet  Google Scholar 

  31. Yang, Z.: Existence and non-existence of global solutions to a generalized modification of the improved Boussinesq equation. Math. Methods Appl. Sci. 21, 1467–1477 (1988)

    MathSciNet  MATH  Google Scholar 

  32. Yang, Z., Wang, X.: Blowup of solutions for improved Boussinesq type equation. J. Math. Anal. Appl. 278, 335–353 (2003)

    Article  MathSciNet  Google Scholar 

  33. Zhang, Z., Lu, F.: Quadratic finite volume element method for improved Boussinesq equation. J. Math. Phys. 53, 1–18 (2012)

    MathSciNet  MATH  Google Scholar 

  34. Zhao, X.: On error estimates of an exponential wave integrator sine pseudospectral method for the Klein–Gordon–Zakharov system. Numer. Methods Partial Differ. Equ. 32, 266–291 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

C. Su is supported by the Alexander von Humboldt Foundation. C. Su would like to thank the Isaac Newton Institute for Mathematical Sciences for support and hospitality during the programme Geometry, compatibility and structure preservation in computational differential equations when work on this paper was taken. The second author would like to thank Dr. Ali Shokri for helpful communication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gulcin M. Muslu.

Additional information

Communicated by Christian Lubich.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, C., Muslu, G.M. An exponential integrator sine pseudospectral method for the generalized improved Boussinesq equation. Bit Numer Math 61, 1397–1419 (2021). https://doi.org/10.1007/s10543-021-00865-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-021-00865-0

Keywords

Mathematics Subject Classification

Navigation