Skip to main content
Log in

A posteriori error analysis for Schwarz overlapping domain decomposition methods

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

Domain decomposition methods are widely used for the numerical solution of partial differential equations on high performance computers. We develop an adjoint-based a posteriori error analysis for both multiplicative and additive overlapping Schwarz domain decomposition methods. The numerical error in a user-specified functional of the solution (quantity of interest) is decomposed into contributions that arise as a result of the finite iteration between the subdomains and from the spatial discretization. The spatial discretization contribution is further decomposed into contributions arising from each subdomain. This decomposition of the numerical error is used to construct a two stage solution strategy that efficiently reduces the error in the quantity of interest by adjusting the relative contributions to the error.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Arbogast, T., Estep, D., Sheehan, B., Tavener, S.: A posteriori error estimates for mixed finite element and finite volume methods for problems coupled through a boundary with nonmatching grids. IMA J. Numer. Anal. 34(4), 1625–1653 (2014)

    Article  MathSciNet  Google Scholar 

  2. Arbogast, T., Estep, D., Sheehan, B., Tavener, S.: A posteriori error estimates for mixed finite element and finite volume methods for parabolic problems coupled through a boundary. SIAM/ASA J. Uncertain. Quant. 3(1), 169–198 (2015)

    Article  MathSciNet  Google Scholar 

  3. Bangerth, W., Rannacher, R..: Adaptive Finite Element Methods for Differential Equations. Birkhäuser, (2013)

  4. Becker, R., Rannacher, R.: An optimal control approach to a posteriori error estimation in finite element methods. Acta Numerica 10(1), 1–102 (2001)

    Article  MathSciNet  Google Scholar 

  5. Butler, T., Estep, D., Sandelin, J.: A computational measure theoretic approach to inverse sensitivity problems II: A posteriori error analysis. SIAM J. Numer. Anal. 50, 22–45 (2012)

    Article  MathSciNet  Google Scholar 

  6. Carey, V., Estep, D., Johansson, A., Larson, M., Tavener, S.J.: Blockwise adaptivity for time dependent problems based on coarse scale adjoint solutions. SIAM J. Sci. Comput. 32(4), 2121–2145 (2010)

    Article  MathSciNet  Google Scholar 

  7. Carey, V., Estep, D., Tavener, S.J.: A posteriori analysis and adaptive error control for operator decomposition solution of coupled semilinear elliptic systems. Int. J. Numer. Meth. Eng. 94(9), 826–849 (2013)

    Article  MathSciNet  Google Scholar 

  8. Chaudhry, J., Burch, N., Estep, D.: Efficient distribution estimation and uncertainty quantification for elliptic problems on domains with stochastic boundaries. SIAM/ASA J. Uncertain. Quant. 6(3), 1127–1150 (2018)

    Article  MathSciNet  Google Scholar 

  9. Chaudhry, J.H., Estep, D., Ginting, V., Tavener, S.J.: A posteriori analysis for iterative solvers for nonautonomous evolution problems. SIAM/ASA J. Uncertain. Quant. 3(1), 434–459 (2015)

    Article  MathSciNet  Google Scholar 

  10. Chaudhry, J.H.: A posteriori analysis and efficient refinement strategies for the Poisson-Boltzmann equation. SIAM J. Sci. Comput. 40(4), A2519–A2542 (2018)

    Article  MathSciNet  Google Scholar 

  11. Chaudhry, J.H., Estep, D., Tavener, S., Carey, V., Sandelin, J.: A posteriori error analysis of two-stage computation methods with application to efficient discretization and the parareal algorithm. SIAM J. Numer. Anal. 54(5), 2974–3002 (2016)

    Article  MathSciNet  Google Scholar 

  12. Chaudhry, J.H., Estep, D., Ginting, V., Shadid, J.N., Tavener, S.J.: A posteriori error analysis of IMEX multi-step time integration methods for advection-diffusion-reaction equations. Comput. Methods Appl. Mech. Eng. 285, 730–751 (2015)

    Article  MathSciNet  Google Scholar 

  13. Chaudhry, J.H., Estep, D., Ginting, V., Tavener, S.J.: A posteriori analysis of an iterative multi-discretization method for reaction-diffusion systems. Comput. Methods Appl. Mech. Eng. 267, 1–22 (2013)

    Article  MathSciNet  Google Scholar 

  14. Chaudhry, J.H., Estep, D., Gunzburger, M.: Exploration of efficient reduced-order modeling and a posteriori error estimation. Int. J. Numer. Meth. Eng. 111(2), 103–122 (2017)

    Article  MathSciNet  Google Scholar 

  15. Chaudhry, J.H., Shadid, J.N., Wildey, T.: A posteriori analysis of an IMEX entropy-viscosity formulation for hyperbolic conservation laws with dissipation. Appl. Numer. Math. 135, (2019)

  16. Collins, J., Estep, D., Tavener, S.J.: A posteriori error estimates for explicit time integration methods. BIT Numer. Math. (2014)

  17. Collins, J.B., Estep, D., Tavener, S.J.: A posteriori error estimation for the Lax–Wendroff finite difference scheme. J. Comput. Appl. Math. 263, 299–311 (2014)

    Article  MathSciNet  Google Scholar 

  18. Collins, J.B., Estep, D., Tavener, S.J.: A posteriori error estimation for a cut cell finite volume method with uncertain interface location. Int. J. Uncertain. Quant. 5(5), (2015)

  19. Dryja, M., Widlund, O.B.: An additive variant of the Schwarz alternating method for the case of many subregions. Technical Report 339, also Ultracomputer Note 131, Department of Computer Science, Courant Institute (1987)

  20. Eriksson, K., Estep, D., Hansbo, P., Johnson, C.: Introduction to adaptive methods for differential equations. Acta Numerica 4, 105–158 (1995)

    Article  MathSciNet  Google Scholar 

  21. Estep, D.: A posteriori error bounds and global error control for approximation of ordinary differential equations. SIAM J. Numer. Anal., 1–48, (1995)

  22. Estep, D.: Error estimates for multiscale operator decomposition for multiphysics models. In: Fish, J. (ed.) Multiscale Methods: Bridging the Scales in Science and Engineering, pp. 305–390. Oxford University Press, Oxford (2009)

    Chapter  Google Scholar 

  23. Estep, D., Ginting, V., Tavener, S.J.: A posteriori analysis of a multirate numerical method for ordinary differential equations. Comput. Methods Appl. Mech. Eng. 223, 10–27 (2012)

    Article  MathSciNet  Google Scholar 

  24. Estep, D., Holst, M., Larson, M.: Generalized Green’s functions and the effective domain of influence. SIAM J. Sci. Comput. 26(4), 1314–1339 (2005)

    Article  MathSciNet  Google Scholar 

  25. Estep, D., Målqvist, A., Tavener, S.J.: Nonparametric density estimation for randomly perturbed elliptic problems I: Computational methods, a posteriori analysis, and adaptive error control. SIAM J. Sci. Comput. 31(4), 2935–2959 (2009)

    Article  MathSciNet  Google Scholar 

  26. Giles, M.B., Süli, E.: Adjoint methods for pdes: a posteriori error analysis and postprocessing by duality. Acta Numerica 11(1), 145–236 (2002)

    Article  MathSciNet  Google Scholar 

  27. Houston, P., Senior, B., Süli, E.: hp-Discontinuous Galerkin finite element methods for hyperbolic problems: error analysis and adaptivity. Int. J. Numer. Meth. Fluids 40(1–2), 153–169 (2002)

    Article  MathSciNet  Google Scholar 

  28. Jiránek, P., Strakoš, Z., Vohralík, M.: A posteriori error estimates including algebraic error and stopping criteria for iterative solvers. SIAM J. Sci. Comput. 32(3), 1567–1590 (2010)

    Article  MathSciNet  Google Scholar 

  29. Johansson, A., Chaudhry, J.H., Carey, V., Estep, D., Ginting, V., Larson, M., Tavener, S.J.: Adaptive finite element solution of multiscale pde-ode systems. Comput. Methods Appl. Mech. Eng. 287, 150–171 (2015)

    Article  MathSciNet  Google Scholar 

  30. Keyes, D.E., Saad, Y., Truhlar, D.G. (eds.): Domain-Based Parallelism and Problem Decomposition Methods in Computational Sciences and Engineering. SIAM, New York (1995)

    Google Scholar 

  31. Kron, G.: A set of principles to interconnect the solutions of physical systems. J. Appl. Phys. 24(8), 965–980 (1953)

    Article  MathSciNet  Google Scholar 

  32. Lions, P.L.: On the Schwarz alternating method III: a variant for nonoverlapping subdomains. In: Third international Symposium on Domain Decomposition Methods for Partial Differential Equations, vol 6, pp. 202–223. Philadelphia, SIAM (1990)

  33. Lions, P.-L.: On the Schwarz alternating method. I. SIAM, Philadelphia (1988)

  34. Marchuk, G.I., Agoshkov, V.I., Shutyaev, V.P.: Adjoint Equations and Perturbation Algorithms in Nonlinear Problems. CRC Press, New York (1996)

    MATH  Google Scholar 

  35. Mathew, T.P.A.: Domain Decomposition Methods for the Numerical Solution of Partial Differential Equations. Lecture Notes in Computational Science and Engineering, vol. 61. Springer, Berlin (2008)

  36. Papež, J., Strakoš, Z., Vohralík, M.: Estimating and localizing the algebraic and total numerical errors using flux reconstructions. Numer. Math. 138(3), 681–721 (2018)

    Article  MathSciNet  Google Scholar 

  37. Przemieniecki, J.S.: Matrix structural analysis of substructures. AIAA J. 1(1), 138–147 (1963)

    Article  Google Scholar 

  38. Smith, B.F., Bjørstad, P.E., Gropp, W.: Domain Decomposition: Parallel Multilevel Methodsfor Elliptic Partial Dierential Equations. Cambridge University Press, Cambridge (1996)

    MATH  Google Scholar 

  39. Toselli, A., Widlund, O.: Domain Decomposition Methods - Algorithms and Theory, volume 34 of Springer Series in Computational Mathematics. Springer, (2004)

  40. Wohlmuth, B.: Discretization Methods and Iterative Solvers Based on Domain Decomposition. Technical report, Habilitation, Department of Mathematics, Augsburg (1999)

Download references

Acknowledgements

J. Chaudhry’s work is supported by the NSF-DMS 1720402. S. Tavener’s work is supported by NSF-DMS 1720473. D. Estep’s work is supported by NSF-DMS 1720473.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon J. Tavener.

Additional information

Communicated by Axel Målqvist.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaudhry, J.H., Estep, D. & Tavener, S.J. A posteriori error analysis for Schwarz overlapping domain decomposition methods. Bit Numer Math 61, 1153–1191 (2021). https://doi.org/10.1007/s10543-021-00864-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-021-00864-1

Keywords

Mathematics Subject Classification

Navigation