Skip to main content
Log in

A priori error estimates of discontinuous Galerkin methods for a quasi-variational inequality

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

We study a priori error estimates of discontinuous Galerkin (DG) methods for solving a quasi-variational inequality, which models a frictional contact problem with normal compliance. In Xiao et al. (Numer Funct Anal Optim 39:1248–1264, 2018), several DG methods are applied to solve quasi-variational inequality, but no error analysis is given. In this paper, the unified numerical analysis of these DG methods is established, and they achieve optimal convergence order for linear elements. Two numerical examples are given, and the numerical convergence orders match well with the theoretical prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Amassad, A., Fabre, C., Sofonea, M.: A quasistatic viscoplastic contact problem with normal compliance and friction. IMA J. Appl. Math. 69, 463–482 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Andersson, L.E.: A quasistatic frictional problem with normal compliance. Nonlinear Anal. 16, 347–369 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  3. Arnold, D.N., Brezzi, F., Cockburn, B., Marini, L.D.: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39, 1749–1779 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Atkinson, K., Han, W.: Theoretical Numerical Analysis, 3rd edn. Springer, New York (2009)

    MATH  Google Scholar 

  5. Bassi, F., Rebay, S., Mariotti, G., Pedinotti,S., Savini, M.: A high-order accurate discontinuous finite element method for inviscid and viscous turbomachinery flows. In: Decuypere, R., Dibelius, G. (eds.), Proceedings of 2nd European Conference on Turbomachinery, Fluid Dynamics and Thermodynamics, pp. 99–108. Technologisch Instituut, Antwerpen (1997)

  6. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods, 3rd edn. Springer-Verlag, New York (2008)

    Book  MATH  Google Scholar 

  7. Brenner, S.C., Sung, L., Zhang, H., Zhang, Y.: A quadratic \(C^0\) interior penalty method for the displacement obstacle problem of clamped Kirchhoff plates. SIAM J. Numer. Anal. 50, 3329–3350 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Brezzi, F., Manzini, G., Marini, D., Pietra,P., Russo, A.: Discontinuous finite elements for diffusion problems, in Atti Convegno in onore di F. Brioschi (Milan, 1997), Istituto Lombardo, Accademia di Scienze e Lettere, Milan, Italy, 197–217 (1999)

  9. Buffa, A., Ortner, C.: Compact embeddings of broken Sobolev spaces and applications. IMA J. Numer. Anal. 29, 827–855 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cascavita, K.L., Chouly, F., Ern, A.: Hybrid high-order discretizations combined with Nitsche’s method for Dirichlet and Signorini boundary conditions. IMA J. Numer. Anal. 40, 2189–2226 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North Holland, Amsterdam (1978)

    MATH  Google Scholar 

  12. Chouly, F., Ern, A., Pignet, N.: A hybrid high-order discretization combined with Nitsche’s method for contact and Tresca friction in small strain elasticity. SIAM J. Sci. Comput. 42, 2300–2324 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chouly, F., Fabre, M., Hild, P., Pousin, J., Renard, Y.: Residual-based a posteriori error estimation for contact problems approximated by Nitsche’s method. IMA J. Numer. Anal. 38, 921–954 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chouly, F., Hild, P.: A Nitsche-based method for unilateral contact problems: numerical analysis. SIAM J. Numer. Anal. 51, 1295–1307 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Chouly, F., Mlika, R., Renard, Y.: An unbiased Nitsche’s approximation of the frictional contact between two elastic structures. Numer. Math. 139, 593–631 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  16. Cockburn, B., Shu, C.-W.: The local discontinuous Galerkin method for time-dependent convection–diffusion systems. SIAM J. Numer. Anal. 35, 2440–2463 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  17. Cockburn, B., Karniadakis, G.E., Shu, C.-W.: Discontinuous Galerkin Methods: Theory, Computation and Applications, Lecture Notes in Computational Science and Engineering, vol. 11, pp. 1119–1148. Springer, New York (2000)

    Google Scholar 

  18. Djoko, J.K., Ebobisse, F., Mcbride, A.T., Reddy, B.D.: A discontinuous Galerkin formulation for classical and gradient plasticity—part 1: formulation and analysis. Comput. Methods Appl. Mech. Eng. 196, 3881–3897 (2007)

    Article  MATH  Google Scholar 

  19. Djoko, J.K.: Discontinuous Galerkin finite element discretization for steady Stokes flows with threshold slip boundary condition. Quaest. Math. 36, 501–516 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Douglas, J., Dupont, T.: Interior Penalty Procedures for Elliptic and Parabolic Galerkin Methods. Lecture Notes in Physics, vol. 58, pp. 207–216. Springer, Berlin (1976)

    Google Scholar 

  21. Glowinski, R.: Numerical Methods for Nonlinear Variational Problems. Springer, New York (1984)

    Book  MATH  Google Scholar 

  22. Glowinski, R., Lions, J.-L., Trémolières, R.: Numerical Analysis of Variational Inequalities. North-Holland, Amsterdam (1981)

    MATH  Google Scholar 

  23. Guan, Q., Gunzburger, M., Zhao, W.: Weak-Galerkin finite element methods for a second-order elliptic variational inequality. Comput. Methods Appl. Mech. Eng. 337, 677–688 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  24. Gudi, T.: A new error analysis for discontinuous finite element methods for linear elliptic problems. Math. Comput. 79, 2169–2189 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Gudi, T., Porwal, K.: A posteriori error control of discontinuous Galerkin methods for elliptic obstacle problems. Math. Comput. 83, 579–602 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  26. Gudi, T., Porwal, K.: A posteriori error estimates of discontinuous Galerkin methods for the Signorini problem. J. Comput. Appl. Math. 292, 257–278 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  27. Han, W.: On the numerical approximation of a frictional contact problem with normal compliance. Numer. Funct. Anal. Optim. 17, 307–322 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  28. Han, W., Shillor, M., Sofonea, M.: Variational and numerical analysis of a quasistatic viscoelastic problem with normal compliance, friction and damage. J. Comput. Appl. Math. 137, 377–398 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  29. Han, W., Sofonea, M.: Analysis and numerical approximation of an elastic frictional contact problem with normal compliance. Appl. Math. 25, 415–435 (1999)

    MathSciNet  MATH  Google Scholar 

  30. Hong, Q., Wang, F., Wu, S., Xu, J.: A unified study of continuous and discontinuous Galerkin methods. Sci. China Math. 62, 1–32 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  31. Jing, F., Han, W., Yan, W., Wang, F.: Discontinuous Galerkin finite element methods for stationary Navier–Stokes problem with a nonlinear slip boundary condition of friction type. J. Sci. Comput. 76, 888–912 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  32. Klarbring, A., Mikelič, A., Schillor, M.: On friction problems with normal compliance. Nonliner Anal. 13, 935–955 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  33. Lee, C.Y., Oden, J.T.: A priori error estimation of \(hp\)-finite element approximations of frictional contact problems with normal compliance. Int. J. Eng. Sci. 31, 927–952 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  34. Lee, C.Y., Oden, J.T.: Theory and approximation of quasistatic frictional contact problems. Comput. Methods Appl. Mech. Eng. 106, 407–429 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  35. Martins, J.A.C., Oden, J.T.: Existence and uniqueness results for dynamics contact problems with nonlinear normal and friction interface laws. Nonlinear Anal. Theory Methods Appl. 11, 407–428 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  36. Rochdi, M., Shillor, M., Sofonea, M.: Quasistatic viscoelastic contact with normal compliance and friction. J. Elast. 51, 105–126 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  37. Signorini, A.: Sopra alcune questioni di statica dei sistemi continui. Annali della Scuola Normale Superiore di Pisa-Classe di Scienze 2, 231–251 (1933)

    MathSciNet  MATH  Google Scholar 

  38. Sofonea, M., Matei, A.: Mathematical Models in Contact Mechanics. Cambridge University Press, Cambridge (2012)

    Book  MATH  Google Scholar 

  39. Wang, F., Han, W., Cheng, X.: Discontinuous Galerkin methods for solving elliptic variational inequalities. SIAM J. Numer. Anal. 48, 708–733 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  40. Wang, F., Han, W., Cheng, X.: Discontinuous Galerkin methods for solving Signorini problem. IMA J. Numer. Anal. 31, 1754–1772 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  41. Wang, F., Han, W., Cheng, X.: Discontinuous Galerkin methods for solving a quasistatic contact problem. Numer. Math. 126, 771–800 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  42. Wang, F., Han, W., Eichholz, J.: A posteriori error estimates of discontinuous Galerkin methods for obstacle problems. Nonlinear Anal. Real World Appl. 22, 664–679 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  43. Wang, F., Han, W., Huang, J., Zhang, T.: Discontinuous Galerkin methods for an elliptic variational inequality of fourth-order. Adv. Var. Hemivar. Inequal. Appl. 33, 199–222 (2015)

    MathSciNet  MATH  Google Scholar 

  44. Wang, F., Ling, M., Han, W., Jing, F.: Adaptive discontinuous Galerkin methods for solving an incompressible stokes flow problem with slip boundary condition of frictional type. J. Comput. Appl. Math. 371, 112270 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  45. Wang, F., Zhang, T., Han, W.: \(C^0\) discontinuous Galerkin methods for a Kirchhoff Plate contact problem. J. Comput. Math. 37, 184–200 (2019)

    Article  MathSciNet  Google Scholar 

  46. Wihler, T.P.: Locking-free adaptive discontinuous Galerkin FEM for linear elasticity problems. Math. Comput. 75, 1087–1102 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  47. Xiao, W., Wang, F., Han, W.: Discontinuous Galerkin methods for solving a frictional contact problem with normal compliance. Numer. Funct. Anal. Optim. 39, 1248–1264 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  48. Zeng, Y., Cheg, J., Wang, F.: Error estimates of the weakly over-penalized symmetric interior penalty method for two variational inequalities. Comput. Math. Appl. 69, 760–770 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank three anonymous referees for their valuable comments and suggestions, which greatly improve this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Wang.

Additional information

Communicated by Rolf Stenberg.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is supported by the National Natural Science Foundation of China (Grant No. 11771350)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, F., Shah, S. & Xiao, W. A priori error estimates of discontinuous Galerkin methods for a quasi-variational inequality. Bit Numer Math 61, 1005–1022 (2021). https://doi.org/10.1007/s10543-021-00848-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-021-00848-1

Keywords

Mathematics Subject Classification

Navigation