Skip to main content
Log in

On a class of L-splines of order 4: fast algorithms for interpolation and smoothing

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

In this paper a special class of one-dimensional L-splines of order 4 is studied, which naturally appear in the computation of interpolation and smoothing with multivariate polysplines. Fast algorithms are provided for interpolation and smoothing with this class of L-splines, as well as a generalization of the Reinsch algorithm to this setting. The explicit description of all mathematical expressions permits a simple and direct numerical implementation. Applications are provided to financial data of the index S&P500, for the fast calculation of statistically interesting quantities, as cross validation (scores), generalized cross validation (scores) for finding the best smoothing parameter \(\alpha \), and the residual sum of squares.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. Data downloaded via https://finance.yahoo.com website. From all S&P500 prices we have subtracted the value 2500 to avoid working with big numbers.

References

  1. Ayalon, Z., Dyn, N., Levin, D.: Piecewise L-splines of order 4: interpolation and \(L^{2}\)-error bounds for splines in tension. J. Approx. Theory 161, 421–431 (2009)

    Article  MathSciNet  Google Scholar 

  2. Buhmann, M.: Radial Basis Functions. Cambridge University Press, Cambridge (2003)

    Book  Google Scholar 

  3. Coddington, E.A., Levinson, N.: Theory of Ordinary Differential Equations. McGraw-Hill, New York (1955)

    MATH  Google Scholar 

  4. de Boor, C.: A Practical Guide to Splines. Springer, Berlin (2001)

    MATH  Google Scholar 

  5. Fasshauer, G., McCourt, M.: Kernel-Based Approximation Methods Using MATLAB. World Scientific Publishers, Singapore (2015)

    Book  Google Scholar 

  6. Golub, G., Van Loan, Ch.: Matrix Computations. Johns Hopkins University Press, Baltimore (2012)

    MATH  Google Scholar 

  7. Green, P., Silverman, B.: Nonparametric Regression and Generalized Linear Models. Chapman and Hall, London (1994)

    Book  Google Scholar 

  8. Gu, Ch.: Smoothing Spline ANOVA Models. Springer, New York (2013)

    Book  Google Scholar 

  9. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer, Berlin (2013)

    MATH  Google Scholar 

  10. Horn, R.A., Johnson, Ch.R.: Matrix Analysis. Cambridge University Press, Cambridge (1985)

  11. Kounchev, O.: Multivariate Polysplines: Applications to Numerical and Wavelet Analysis. Academic Press, San Diego (2001)

    MATH  Google Scholar 

  12. Kounchev, O., Render, H.: The approximation order of polysplines. Proc. Am. Math. Soc. 132, 455–461 (2004)

    Article  MathSciNet  Google Scholar 

  13. Kounchev, O., Render, H.: Cardinal interpolation with polysplines on annuli. J. Approx. Theory 137, 89–107 (2005)

    Article  MathSciNet  Google Scholar 

  14. Kounchev, O., Render, H.: Polyharmonic splines on grids \(Z\times Z^{n}\) and their limits. Math. Comput. 74, 1831–1841 (2005)

    Article  Google Scholar 

  15. Lyche, T., Schumaker, L.L.: Computation of smoothing and interpolating natural splines via local bases. SIAM J. Numer. Anal. 10(6), 1027–1038 (1973)

    Article  MathSciNet  Google Scholar 

  16. McCartin, B.J.: Computation of exponential splines. SIAM J. Sci. Stat. Comput. 11(2), 242–262 (1990)

    Article  MathSciNet  Google Scholar 

  17. McCartin, B.J.: Theory of exponential splines. J. Approx. Theory 66, 1–23 (1991)

    Article  MathSciNet  Google Scholar 

  18. Pontryagin, L.: Ordinary Differential Equations. Addison-Wesley, Reading (1962)

    MATH  Google Scholar 

  19. Pruess, S.: Properties of splines in tension. J. Approx. Theory 17, 86–96 (1976)

    Article  MathSciNet  Google Scholar 

  20. Ramsay, J., Silverman, B.W.: Functional Data Analysis. Springer, Berlin (2005)

    Book  Google Scholar 

  21. Schultz, M.H., Varga, R.S.: L-splines. Numer. Math. 10, 345–369 (1967)

    Article  MathSciNet  Google Scholar 

  22. Schumaker, L.: Spline Functions: Basic Theory. Academic Press, San Diego (2007)

    Book  Google Scholar 

  23. Stoer, J., Bulirsch, R.: Introduction to Numerical Analysis. Springer, Berlin (2003)

    MATH  Google Scholar 

  24. Wahba, G.: Spline Models for Observational Data. SIAM, Philadelphia (1990)

    Book  Google Scholar 

  25. Wendland, H.: Scattered Data Approximation. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Render.

Additional information

Communicated by Tom Lyche.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

O. Kounchev was partially supported by the Alexander von Humboldt Foundation, Bonn, while all were supported by Grant DN-02-13 and Grant KP-06-H32-8 with Bulgarian NSF.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kounchev, O., Render, H. & Tsachev, T. On a class of L-splines of order 4: fast algorithms for interpolation and smoothing. Bit Numer Math 60, 879–899 (2020). https://doi.org/10.1007/s10543-020-00801-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-020-00801-8

Keywords

Mathematics Subject Classification

Navigation