Skip to main content
Log in

Poincaré–Friedrichs inequalities of complexes of discrete distributional differential forms

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

We derive bounds for the constants in Poincaré–Friedrichs inequalities with respect to mesh-dependent norms for complexes of discrete distributional differential forms. A key tool is a generalized flux reconstruction which is of independent interest. The results apply to piecewise polynomial de Rham sequences on bounded domains with mixed boundary conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnold, D.N., Falk, R.S., Winther, R.: Finite element exterior calculus, homological techniques, and applications. Acta Numer. 15, 1–155 (2006)

    Article  MathSciNet  Google Scholar 

  2. Arnold, D.N., Falk, R.S., Winther, R.: Geometric decompositions and local bases for spaces of finite element differential forms. Comput. Methods Appl. Mech. Eng. 198(21–26), 1660–1672 (2009)

    Article  MathSciNet  Google Scholar 

  3. Arnold, D.N., Falk, R.S., Winther, R.: Finite element exterior calculus: from Hodge theory to numerical stability. Bull. Am. Math. Soc. 47(2), 281–354 (2010)

    Article  MathSciNet  Google Scholar 

  4. Bott, R., Tu, L.W.: Differential Forms in Algebraic Topology. Graduate Texts in Mathematics, vol. 82. Springer, New York (1982)

    Book  Google Scholar 

  5. Braess, D., Schöberl, J.: Equilibrated residual error estimator for edge elements. Math. Comput. 77(262), 651–672 (2008)

    Article  MathSciNet  Google Scholar 

  6. Christiansen, S.H., Munthe-Kaas, H.Z., Owren, B.: Topics in structure-preserving discretization. Acta Numer. 20, 1–119 (2011)

    Article  MathSciNet  Google Scholar 

  7. Christiansen, S.H., Rapetti, F.: On high order finite element spaces of differential forms. Math. Comput. (2015). https://doi.org/10.1090/mcom/2995

    Article  MATH  Google Scholar 

  8. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1980)

    MATH  Google Scholar 

  9. Costabel, M., McIntosh, A.: On Bogovskiĭ and regularized Poincaré integral operators for de Rham complexes on Lipschitz domains. Math. Z. 265(2), 297–320 (2010)

    Article  MathSciNet  Google Scholar 

  10. Desoer, C.A., Whalen, B.H.: A note on pseudoinverses. J. Soc. Ind. Appl. Math. 11(2), 442–447 (1963)

    Article  MathSciNet  Google Scholar 

  11. Dodziuk, J.: Finite-difference approach to the Hodge theory of harmonic forms. Am. J. Math. 98, 79–104 (1976)

    Article  MathSciNet  Google Scholar 

  12. Gelfand, S.I., Manin, Y.I.: Homological Algebra. Encyclopedia of Mathematical Sciences, vol. 38. Springer, Berlin (1999)

    Google Scholar 

  13. Gol’dshtein, V., Mitrea, I., Mitrea, M.: Hodge decompositions with mixed boundary conditions and applications to partial differential equations on Lipschitz manifolds. J. Math. Sci. 172(3), 347–400 (2011)

    Article  MathSciNet  Google Scholar 

  14. Hiptmair, R.: Higher order Whitney forms. Geom. Methods Comput. Electromagn. 32, 271–299 (2001)

    Google Scholar 

  15. Hiptmair, R.: Finite elements in computational electromagnetism. Acta Numer. 11(1), 237–339 (2002)

    Article  MathSciNet  Google Scholar 

  16. Jochmann, F.: A compactness result for vector fields with divergence and curl in \(l^q\) involving mixed boundary conditions. Appl. Anal. 66(1–2), 189–203 (1997)

    Article  MathSciNet  Google Scholar 

  17. Lee, J.M.: Introduction to Smooth Manifolds. Graduate Texts in Mathematics, vol. 218, 2nd edn. Springer, New York (2012)

    Book  Google Scholar 

  18. Licht, M.W.: Complexes of discrete distributional differential forms and their homology theory. Found. Comput. Math. (2016). https://doi.org/10.1007/s10208-016-9315-y

    Article  MATH  Google Scholar 

  19. Licht, M.W.: On the a priori and a posteriori error analysis in finite element exterior calculus. Ph.D. Thesis, Dissertation, Department of Mathematics, University of Oslo, Norway (2017)

  20. Picard, R.: An elementary proof for a compact imbedding result in generalized electromagnetic theory. Math. Z. 187(2), 151–164 (1984)

    Article  MathSciNet  Google Scholar 

  21. Picard, R., Weck, N., Witsch, K.J.: Time-harmonic Maxwell equations in the exterior of perfectly conducting, irregular obstacles. Analysis 21(3), 231–264 (2001)

    Article  MathSciNet  Google Scholar 

  22. Rapetti, F., Bossavit, A.: Whitney forms of higher degree. SIAM J. Numer. Anal. 47, 2369–2386 (2009)

    Article  MathSciNet  Google Scholar 

  23. Spanier, E.H.: Algebraic Topology. Springer, New York (1995). Corrected reprint of the 1966 original

  24. Weber, C., Werner, P.: A local compactness theorem for Maxwell’s equations. Math. Methods Appl. Sci. 2(1), 12–25 (1980)

    Article  MathSciNet  Google Scholar 

  25. Weck, N.: Maxwell’s boundary value problem on Riemannian manifolds with nonsmooth boundaries. J. Math. Anal. Appl. 46(2), 410–437 (1974)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin W. Licht.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This research was supported by the European Research Council through the FP7-IDEAS-ERC Starting Grant Scheme, Project 278011 STUCCOFIELDS.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Christiansen, S.H., Licht, M.W. Poincaré–Friedrichs inequalities of complexes of discrete distributional differential forms. Bit Numer Math 60, 345–371 (2020). https://doi.org/10.1007/s10543-019-00784-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-019-00784-1

Keywords

Mathematics Subject Classification

Navigation