Skip to main content
Log in

Behavior of different numerical schemes for random genetic drift

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

In the problem of random genetic drift, the probability density of one gene is governed by a degenerated convection-dominated diffusion equation. Dirac singularities will always be developed at boundary points as time evolves, which is known as the fixation phenomenon in genetic evolution. Three finite volume methods: FVM1-3, one central difference method: FDM1 and three finite element methods: FEM1-3 are considered. These methods lead to different equilibrium states after a long time. It is shown that only schemes FVM3 and FEM3, which are the same, preserve probability, expectation and positiveness and predict the correct probability of fixation. FVM1-2 wrongly predict the probability of fixation due to their intrinsic viscosity, even though they are unconditionally stable. Contrarily, FDM1 and FEM1-2 introduce different anti-diffusion terms, which make them unstable and fail to preserve positiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Crow, J.F., Kimura, M.: An Introduction to Population Genetics Theory. Harper & Row, New York (1970)

    MATH  Google Scholar 

  2. Der, R., Epstein, C.L., Plotkin, J.B.: Generalized population models and the nature of genetic drift. Theor. Popul. Biol. 80(2), 80–99 (2011)

    Article  MATH  Google Scholar 

  3. Duan, C., Liu, C., Wang, C., Yue, X.: Numerical complete solution for random genetic drift by energetic variational approach. arXiv:1803.09436. Mathematical modelling and numerical analysis accepted and published online (2018) https://doi.org/10.1051/m2an/2018058

  4. Eymard, R., Gallouët, T., Herbin, R.: The finite volume method. In: Ciarlet, P., Lions, J.L. (eds.) Handbook for Numerical Analysis, pp. 715–1022. North Holland, Amsterdam (2000)

    Google Scholar 

  5. Fisher, R.A.: On the dominance ratio. Proc. R. Soc. Edinb. 42, 321–431 (1922)

    Article  Google Scholar 

  6. Hössjer, O., Tyvand, P.A., Miloh, T.: Exact Markov chain and approximate diffusion solution for hapliod genetic drift with one-way mutation. Math. Biosci. 272, 100–112 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Kimura, M.: Stochastic processes and distribution of gene frequencies under natural selection. Cold Spring Harb. Symp. Quant. Biol. 20, 33–53 (1955)

    Article  Google Scholar 

  8. Kimura, M.: Random genetic drift in multi-allelic locus. Evolution 9(4), 419–435 (1955)

    Article  Google Scholar 

  9. Kimura, M.: On the probability of fixation of mutant genes in a population. Genetics 47(6), 713–719 (1962)

    Google Scholar 

  10. Kimura, M.: Diffusion models in population genetics. J. Appl. Probab. 1, 177–232 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kimura, M.: The Neutral Theory of Molecular Evolution: A Review of Recent Evidence. Cambridge University Press, Cambridge (1983)

    Book  Google Scholar 

  12. LeVeque, R.: Finite-Volume Methods for Hyperbolic Problems. Cambridge University Press, Cambridge (2002)

    Book  MATH  Google Scholar 

  13. McKane, A.J., Waxman, D.: Sigular solution of the diffusion equation of population genetics. J. Theor. Biol. 247, 849–858 (2007)

    Article  Google Scholar 

  14. Moran, P.A.P.: Random processes in genetics. Proc. Camb. Philos. Soc. 54, 60–72 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  15. Roos, H.G., Stynes, M., Tobiska, L.: Numerical Methods for Singularly Perturbed Differential Equations. Springer, New York (1996)

    Book  MATH  Google Scholar 

  16. Thomee, V.: Galerkin Finite Element Methods for Parabolic Problems. Springer Series in Computational Mathematics, vol. 25. Springer, New York (2006)

    MATH  Google Scholar 

  17. Tran, T.D., Hofrichter, J., Jost, J.: A general solution of the Wright-Fisher model of random genetic drift. Differ. Equ. Dyn. Syst. (2012). https://doi.org/10.1007/s12591-016-0289-7

  18. Tran, T.D., Hofrichter, J., Jost, J.: An introduction to the mathematical structure of the Wright–Fisher model of population genetics. Theory Biosci. 132, 73–82 (2013)

    Article  Google Scholar 

  19. Waxman, D.: Fixation at a locus with multiple alleles: structure and solution of the Wright Fisher model. J. Theor. Biol. 257, 245–251 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Wright, S.: The evolution of dominace. Am. Nat. 63(689), 556–561 (1929)

    Article  Google Scholar 

  21. Wright, S.: The differential equation of the distribution of gene frequencies. Proc. Natl. Acad. Sci. U.S.A. 31, 382–389 (1945)

    Article  MathSciNet  MATH  Google Scholar 

  22. Zhao, L., Yue, X., Waxman, D.: Complete numerical solution of the diffusion equation of random genetic drift. Genetics 194(4), 973–985 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

The authors benefitted a great deal from discussions with Prof. David Waxman, Prof. Xinfu Chen and Prof. Xiaobing Feng. The authors thank the anonymous referees for their most valuable comments which improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingye Yue.

Additional information

Communicated by Elisabeth Larsson.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Partially supported by NSF of China Grants 11271281, 11301368 and 91230106 and by NSF Grants DMS-1159937, DMS-1216938 and DMS-1109107.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, S., Chen, M., Liu, C. et al. Behavior of different numerical schemes for random genetic drift. Bit Numer Math 59, 797–821 (2019). https://doi.org/10.1007/s10543-019-00749-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-019-00749-4

Keywords

Mathematics Subject Classification

Navigation