Skip to main content
Log in

Well-balanced mesh-based and meshless schemes for the shallow-water equations

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

We formulate a general criterion for the exact preservation of the “lake at rest” solution in general mesh-based and meshless numerical schemes for the strong form of the shallow-water equations with bottom topography. The main idea is a careful mimetic design for the spatial derivative operators in the momentum flux equation that is paired with a compatible averaging rule for the water column height arising in the bottom topography source term. We prove consistency of the mimetic difference operators analytically and demonstrate the well-balanced property numerically using finite difference and RBF-FD schemes in the one- and two-dimensional cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Audusse, E., Bouchut, F., Bristeau, M.O., Klein, R., Perthame, B.: A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows. SIAM J. Sci. Comput. 25(6), 2050 (2004)

    Article  MathSciNet  Google Scholar 

  2. Gallouët, T., Hérard, J.M., Seguin, N.: Some approximate Godunov schemes to compute shallow-water equations with topography. Comput. Fluids 32(4), 479 (2003)

    Article  MathSciNet  Google Scholar 

  3. Kurganov, A., Petrova, G.: A second-order well-balanced positivity preserving central-upwind scheme for the Saint-Venant system. Commun. Math. Sci. 5(1), 133 (2007)

    Article  MathSciNet  Google Scholar 

  4. LeVeque, R.J.: Balancing source terms and flux gradients in high-resolution Godunov methods: the quasi-steady wave-propagation algorithm. J. Comput. Phys. 146(1), 346 (1998)

    Article  MathSciNet  Google Scholar 

  5. Vater, S., Beisiegel, N., Behrens, J.: A limiter-based well-balanced discontinuous Galerkin method for shallow-water flows with wetting and drying: one-dimensional case. J. Behrens Adv. Water Resour. 85, 1 (2015)

    Article  Google Scholar 

  6. Hon, Y.C., Cheung, K.F., Mao, X.Z., Kansa, E.J.: Multiquadric solution for shallow water equations. J. Hydraul. Eng. 125(5), 524 (1999)

    Article  Google Scholar 

  7. Wong, S.M., Hon, Y.C., Golberg, M.A.: Compactly supported radial basis functions for shallow water equations. Appl. Math. Comput. 127(1), 79 (2002)

    MathSciNet  MATH  Google Scholar 

  8. Zhou, X., Hon, Y.C., Cheung, K.F.: A grid-free, nonlinear shallow-water model with moving boundary. Eng. Anal. Bound. Elem. 28(8), 967 (2004)

    Article  Google Scholar 

  9. Xia, X., Liang, Q., Pastor, M., Zou, W., Zhuang, Y.F.: Balancing the source terms in a SPH model for solving the shallow water equations. Adv. Water Resour. 59, 25 (2013)

    Article  Google Scholar 

  10. Bochev, P.B., Hyman, J.M.: Principles of mimetic discretizations of differential operators. In: Compatible Spatial Discretizations, p. 89. Springer, Berlin (2006)

  11. Hyman, J.M., Shashkov, M.: Mimetic discretizations for Maxwell’s equations. J. Comput. Phys. 151(2), 881 (1999)

    Article  MathSciNet  Google Scholar 

  12. Brezzi, F., Lipnikov, K., Shashkov, M.: Convergence of the mimetic finite difference method for diffusion problems on polyhedral meshes. SIAM J. Numer. Anal. 43(5), 1872 (2005)

    Article  MathSciNet  Google Scholar 

  13. Van’t Hof, B., Veldman, A.E.P.: Mass, momentum and energy conserving (MaMEC) discretizations on general grids for the compressible Euler and shallow water equations. J. Comput. Phys. 231(14), 4723 (2012)

    Article  MathSciNet  Google Scholar 

  14. Van Reeuwijk, M.: A mimetic mass, momentum and energy conserving discretization for the shallow water equation. Comput. Fluids 46(1), 411 (2011)

    Article  MathSciNet  Google Scholar 

  15. Caramana, E.J., Burton, D.E., Shashkov, M.J., Whalen, P.P.: The construction of compatible hydrodynamics algorithms utilizing conservation of total energy. J. Comput. Phys. 146(1), 227 (1998). https://doi.org/10.1006/jcph.1998.6029

    Article  MathSciNet  MATH  Google Scholar 

  16. Frank, J., Reich, S.: Conservation properties of smoothed particle hydrodynamics applied to the shallow water equation. BIT 43(1), 41 (2003). https://doi.org/10.1023/A:1023620100065

    Article  MathSciNet  MATH  Google Scholar 

  17. Dubinkina, S., Frank, J.: Statistical relevance of vorticity conservation in the Hamiltonian particle-mesh method. J. Comput. Phys. 229(7), 2634 (2010). https://doi.org/10.1016/j.jcp.2009.12.012

    Article  MathSciNet  MATH  Google Scholar 

  18. Pedlosky, J.: Geophysical Fluid Dynamics. Springer, New York (1987)

    Book  Google Scholar 

  19. Fornberg, B., Larsson, E., Flyer, N.: Stable computations with Gaussian radial basis functions. SIAM J. Sci. Comput. 33(2), 869 (2011)

    Article  MathSciNet  Google Scholar 

  20. Fornberg, B., Flyer, N.: A Primer on Radial Basis Functions with Applications to the Geosciences, vol. 3529. SIAM Press, Philadelphia (2015)

    Book  Google Scholar 

  21. Fornberg, B., Flyer, N.: Solving PDEs with radial basis functions. Acta Numer. 24, 215 (2015)

    Article  MathSciNet  Google Scholar 

  22. Seibold, B.: Minimal positive stencils in meshfree finite difference methods for the Poisson equation. Comput. Methods Appl. Mech. Engrg.198(3–4), 592 (2008)

    Article  MathSciNet  Google Scholar 

  23. Bayona, V., Flyer, N., Fornberg, B., Barnett, G.A.: On the role of polynomials in RBF-FD approximations: II. Numerical solution of elliptic PDEs. J. Comput. Phys. 332, 257 (2017)

    Article  MathSciNet  Google Scholar 

  24. Fornberg, B., Lehto, E.: Stabilization of RBF-generated finite difference methods for convective PDEs. J. Comput. Phys. 230(6), 2270 (2011)

    Article  MathSciNet  Google Scholar 

  25. Thacker, W.C.: Some exact solutions to the nonlinear shallow-water wave equations. J. Fluid Mech. 107, 499 (1981)

    Article  MathSciNet  Google Scholar 

  26. Brecht, R., Bihlo, A., MacLachlan, S., Behrens, J.: A well-balanced meshless tsunami propagation and inundation model. Adv. Water Resour. https://doi.org/10.1016/j.advwatres.2017.12.013

    Article  Google Scholar 

  27. George, D.L., LeVeque, R.J.: Finite volume methods and adaptive refinement for global tsunami propagation and local inundation. Sci. Tsunami Hazards 24(5), 319 (2006)

    Google Scholar 

  28. Verstappen, R.W.C.P., Veldman, A.E.P.: Symmetry-preserving discretization of turbulent flow. J. Comput. Phys. 187(1), 343 (2003)

    Article  MathSciNet  Google Scholar 

  29. Martin, B., Fornberg, B., St-Cyr, A.: Seismic modeling with radial-basis-function-generated finite differences. Geophysics 80(4), T137 (2015)

    Article  Google Scholar 

  30. Martin, B., Fornberg, B.: Seismic modeling with radial basis function-generated finite differences (RBF-FD)—a simplified treatment of interfaces. J. Comput. Phys. 335, 828 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This research was undertaken, in part, thanks to funding from the Canada Research Chairs program and the NSERC Discovery Grant program. The authors thank Grady Wright for helpful discussions, and the two anonymous referees for their helpful and considerate remarks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott MacLachlan.

Additional information

Communicated by Elisabeth Larsson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bihlo, A., MacLachlan, S. Well-balanced mesh-based and meshless schemes for the shallow-water equations. Bit Numer Math 58, 579–598 (2018). https://doi.org/10.1007/s10543-018-0696-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-018-0696-y

Keywords

Mathematics Subject Classification

Navigation